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6.01 Final Exam Fall 2016

Name: Section Number:

Kerberos (Athena) name:

Section Design Lab Time
1: Thursday 9:30am
2: Thursday 2:00pm

Please WAIT until we tell you to begin.

During the exam, you may refer to any written or printed paper material.
You may NOT use any electronic devices (including calculators, phones, etc).

If you have questions, please come to us at the front to ask them.

Enter all answers in the boxes provided.
Extra work may be taken into account when assigning partial credit,
but only work shown on pages with QR codes will be considered.

Question 1: 18 Points
Question 2: 10 Points
Question 3: 10 Points
Question 4: 16 Points
Question 5: 18 Points
Question 6: 18 Points
Question 7: 18 Points
Question 8: 16 Points

Total: 124 Points
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1 Catching the Bus (18 Points)
Ben Bitdiddle needs to catch a bus in an infinite 2-d grid. We know the bus’s schedule, and we
want to use the graph search algorithms we’ve built up in 6.01 to plan a path such that Ben and
the bus end up in the same grid location at the same time.

Assume that the search starts at time 0 with Ben in location (0,0). On each step, time increases
by 1, and Ben can move to any of the eight neighboring locations, or he can remain in the same
location.

The position of the bus is specified by a procedure bus_schedule, which takes a time as input
and returns the bus’s location at that time as a tuple (r,c).

1.1 Paths
For the following implementations of the bus’s schedule, what is one sequence of locations (rep-
resenting Ben’s location at time 0, 1, 2...) that might result from running a breadth-first search in
this domain? Enter None if no path is returned, either because BFS runs indefinitely, or because it
returns without having found a path. Note that there may be more than one correct answer, but
you need only enter one.

1.1.1 Schedule 1

def bus_schedule(t):
return (1,t-2)

Path found by BFS:

1.1.2 Schedule 2

def bus_schedule(t):
return (2, (3*t) % 8)

Path found by BFS:

1.1.3 Schedule 3

def bus_schedule(t):
return (t+1, t+1)

Path found by BFS:
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1.2 Search Implementation
Recall that, in order to perform a search using the methods we have built up in 6.01, we need the
following pieces:

• an appropriate successor function

• a goal test function

• a starting state

Enter your definitions for these pieces below.

DIRECTIONS = [(0,0), (1,0), (0,1), (-1,0), (0,-1), (1,1), (1,-1), (-1,1), (-1,-1)]

def bus_catching_successors(state):
# your code here

def goal_test(state):
#your code here

#enter your code for start_state below
start_state =
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2 Op-Amp (10 Points)
In the circuit below, solve for the voltages at the nodes labeled A, B, C, D, and E, all relative to
the indicated ground. Make the ideal op-amp assumption, and ignore output limitations of the
op-amp. Write your answers (including units) in the boxes below.

1Ω

1Ω

2V

1Ω

1Ω

1Ω 1Ω

1Ω

A

B

C

D

E

VA =

VB =

VC =

VD =

VE =
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Worksheet (intentionally blank)
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3 Admissible (10 Points)
In this question, we will look at automating the process of deciding whether or not given heuristic
functions are admissible in a particular search domain.

On the facing page, write a function admissible_heuristics that takes five arguments:

• heuristics: a list containing the heuristic functions to test

• all_states: a list containing all the states in the search space fromwhich the goal is reachable

• successors: an appropriate successor function for searching in this domain using uc_search

• goal_test: a goal test function for searching in this space

• path_cost: a function that takes a path (a list of states) and returns the cost of that path

Your function should return a list containing only the heuristic functions from the heuristics
list that are admissible. If none of the functions are admissible, it should return an empty list.

Note that the source code for the uc_search function from lib601 is included for reference on
the last page of this exam, which you may remove.
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from lib601.search import uc_search

def admissible_heuristics(heuristics, all_states, successors, goal_test, path_cost):
# your code here
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4 System (16 Points)
Consider an LTI system described by the following difference equation:

y[n+ 1] = 0.5y[n] + x[n]

1. Determine the system functionalH for this system.

H =

2. H is now placed in a feedback control loop as shown below, where k is a constant gain:

H+ kX Y
−

Determine Y
X for this new system, as a rational polynomial in R (not includingH).

Y

X
=

3. For K=1, draw the pole(s) of Y
X on the complex plane below.

Im

Re
1

4. Determine the range of k for which the system is stable, and enter the range in the box below:
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5. Now assume a delay is introduced in the feedback loop:

H+

R

kX Y
−

Determine the new system functional Y
X as a rational polynomial in R (not includingH).

Y

X
=

6. For each gain k, which of the following best describes the system’s unit sample response?

A. y[n] = 0 for all n

B. y[n] constant and nonzero for all n > 0

C. y[n] oscillatory and decaying

D. y[n] oscillatory with constant amplitude

E. y[n] oscillatory and increasing to infinity

F. y[n]monotonic and decaying

G. y[n]monotonic and increasing to infinity

Enter one of these letters in each box below:

k = −1 :

k = 1 :

k = 0 :
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5 Return of the Killer Hornets (18 Points)
Consider a world with some population B of nice, pleasant bees and a populationH of crazy, evil,
killer Japanese giant hornets. Bees don’t bother anyone, enjoying life and making honey. Hornets
kill bees (when they can catch them). The bee population naturally increases, but when there are
hornets around, they kill the bees and decrease the bee population. The hornet population, in the
absence of honeybees to hunt, stays the same, or declines a little.

5.1 Initial distribution
Let’s assume that the bee population (B) can be low, med or high, and that the hornet population
(H) can be low, med, or high. So, there are 9 states, each corresponding to some value of B and
some value of H.

Here is the initial belief state, which is written as a joint distribution over B and H, Pr(B,H).

Hornets
low med high

Bees
low 0.04 0.20 0.18
med 0.08 0.16 0.02
high 0.28 0.04 0.00

1. What is the marginal distribution over the hornet population, Pr(H)?

2. What is the distribution Pr(B|H = low)?

3. What is the distribution Pr(B|H = high)?

4. Are B and H independent? Explain why or why not.
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5.2 Transitions
Let’s start by studying how the bee population evolves when there are no hornets, represented by
Ht = low (and the hornet population doesn’t change).

Pr(Bt+1 = low | Ht = low,Bt = low) = 0.1

Pr(Bt+1 = med | Ht = low,Bt = low) = 0.9

Pr(Bt+1 = high | Ht = low,Bt = low) = 0.0

Pr(Bt+1 = low | Ht = low,Bt = med) = 0.0

Pr(Bt+1 = med | Ht = low,Bt = med) = 0.3

Pr(Bt+1 = high | Ht = low,Bt = med) = 0.7

Pr(Bt+1 = low | Ht = low,Bt = high) = 0.0

Pr(Bt+1 = med | Ht = low,Bt = high) = 0.0

Pr(Bt+1 = high | Ht = low,Bt = high) = 1.0

1. Assume Ht = low. For simplicity, also assume that we start out knowing with certainty that
the bee population is low. What is the distribution over the possible levels of the bee population
(low, med, high) after 1 time step?

2. Assume Ht = low. For simplicity, also assume that we start out knowing with certainty that
the bee population is low. What is the distribution over the possible levels of the bee population
(low, med, high) after 2 time steps?

3. Assume Ht = low. For simplicity, also assume that we start out knowing with certainty that
the bee population is low. What value does the distribution over the possible levels of the bee
population (low, med, high) approach as the number of time steps goes to infinity?



6.01 Final Exam Fall 2016

12

5.3 Observations
Imagine that you are starting with the initial belief state, as given by the joint distribution from
problem 5.1. If it helps, you can think of it as the following DDist over pairs of values (the first is
the value of B, the second is the value of H):

DDist({(’low’, ’low’) : 0.04, (’low’, ’med’) : 0.2, (’low’, ’high’) : 0.18,
(’med’, ’low’) : 0.08, (’med’, ’med’) : 0.16, (’med’, ’high’) : 0.02,
(’high’, ’low’) : 0.28, (’high’, ’med’) : 0.04, (’high’, ’high’) : 0.00})

You send an ecologist out into the field to sample the numbers of bees and hornets. The ecologist
can’t really figure out the absolute numbers of each species, but reports one of three observations:
• moreH: means that there are significantly more hornets than bees (that is, that the level of hor-
nets is high and the level of bees ismed or low, or that the level of hornets ismed and the level
of bees is low).

• moreB: means that there are significantly more bees than hornets (that is, that the level of bees
is high and the level of hornets is med or low, or that the level of bees is med and the level of
hornets is low).

• same: means that there are roughly the same number of hornets as bees (the populations have
the same level).

1. If there is no noise in the ecologist’s observations (that is, the observation is always true, given
the state), and the observation is moreB, what is the resulting belief state Pr(B0, H0 | O0 =
moreB) (the distribution over states given the observation)? Fill in the table below with the
joint probabilities in the updated belief:

Hornets
low med high

low

Bees med

high
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2. Now, we will assume that the ecologist’s observations are fallible.

Pr(Ot = moreH | Bt < Ht) = 0.9

Pr(Ot = same | Bt < Ht) = 0.1

Pr(Ot = moreB | Bt < Ht) = 0.0

Pr(Ot = moreH | Bt = Ht) = 0.1

Pr(Ot = same | Bt = Ht) = 0.8

Pr(Ot = moreB | Bt = Ht) = 0.1

Pr(Ot = moreH | Bt > Ht) = 0.0

Pr(Ot = same | Bt > Ht) = 0.1

Pr(Ot = moreB | Bt > Ht) = 0.9

Again starting from the initial belief state, if the observation is moreB, what is the belief state
Pr(B0, H0 | O0 = moreB) (the distribution over states given the observation)? Fill in the table
below with the joint probabilities in the updated belief:

Hornets
low med high

low

Bees med

high
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6 Flood Fill (18 Points)
In computer drawing programs, a "paint bucket" tool is often provided, which re-colors all the
cells of a particular color in an enclosed region. When a user clicks on a pixel, that pixel and all
surrounding pixels that share the original color are replaced with a different color. Typically, this
is implementedwith a "flood fill" algorithm that closely resembles the graph search algorithmswe
have seen in 6.01.
For now, wewill assume that an image is represented as a 2-dimensional array (a list of lists) called
image, where image[r][c] returns the color of the pixel in row r and column c, image.height is
the number of rows in the image, and image.width is the number of columns in the image. Also,
assume that the color that was originally clicked is stored as clicked_color, that the desired
color is stored as fill_color, and that a copy of the original image (before the flood fill) is stored
as original_image.
Consider three possible successor functions for a search in this space:

01 def color_successor_1(point):
02 row, col = point
03 neighbors = []
04 for (dr, dc) in [(0,1), (1,0), (0,-1), (-1,0)]:
05 new_r = row+dr
06 new_c = col+dc
07 if 0 <= new_r < image.height and 0 <= new_c < image.width:
08 image[new_r][new_c] = fill_color
09 if original_image[new_r][new_c] == clicked_color:
10 neighbors.append((new_r, new_c))
11 return neighbors

In color_successor_2, lines 8-10 instead read:

08 if original_image[new_r][new_c] == clicked_color:
09 image[new_r][new_c] = fill_color
10 neighbors.append((new_r, new_c))

In color_successor_3, lines 8-10 instead read:

08 if original_image[new_r][new_c] == clicked_color:
09 image[new_r][new_c] = fill_color
10 neighbors.append((new_r, new_c))

Three possible goal tests:

def goal_test_a(state):
return True

def goal_test_b(state):
return False

def goal_test_c(state):
return original_image[state[0]][state[1]] != clicked_color

And two possible search functions, each implemented as in lib601 (note that the source code of
the search function is available on the last page of this exam, which you may remove):
i. BFS with dynamic programming
ii. DFS with dynamic programming
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Consider all possible combinations of the successor functions, goal test, and search. Each combi-
nation is represented by:

• a number (1-3) representing the successor function,

• a letter (a-c) representing the goal test function, and

• a roman numeral (i or ii) representing the search function.

For each combination, enter all three values above in one of the boxes below the image that would
result from running the search with that combination of inputs to completion, starting from the
location labeled "S". For example, if an image would result from running with successor function
1, goal test a, and search i, enter (1, a, i) in one of the boxes below that image.

If there are more boxes than you need, leave the remaining boxes blank. If there are too few boxes,
enter any subset of the valid answers in the boxes.

S S S S S

S S S S S
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7 Coffee Break (18 Points)
Ben Bitdiddle was working on a design for a new circuit when he spilled coffee on his desk, de-
stroying part of his schematic! Here is what he was able to recover:

Before the spill, he noted the following measurements:

• With nothing else connected to the circuit, the potential at n1 is 12 Volts higher than the po-
tential at n2.

• With an additional 2Ω resistor connected to n1 and n2, the potential measured at n1 is 7.5
Volts higher than the potential at n2.

• With nothing else connected to the circuit, the potential atn2 is 4Volts higher than the potential
at n3.

• With nothing else connected to the circuit, the resistance measured between n2 and n3 is 1Ω.

In the box on the facing page, sketch one possible circuit that might have been obscured by the
coffee stain.
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Draw the missing part of Ben’s circuit in the box below, using only constant-valued resistors, cur-
rent sources, voltage sources, and/or op-amps. Make sure to label n1, n2, and n3, as well as the
values of all resistors and sources in your circuit, including units.
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8 Say "Cheese!" (16 Points)
The workers at a cheese shop throw completed wheels of cheese into a barrel that holds 4 cheese
wheels, and customers come and buy cheese wheels from the barrel. The shop is still a small-time
operation, so they only have two workers.

At the beginning of each hour (at x:01), each worker makes a new cheese wheel and adds it to the
barrel with a probability that depends on the number n of cheese wheels already in the barrel:

Pr(make a new cheese wheel) =


1/2 if n = 0
1/2 if n = 1
1/4 if n = 2
0 otherwise

You can assume that each hour, the two workers operate based on the same value of n (measured
at x:00). Youmay also assume that, like all good workers, they never take breaks, they never sleep,
they will live forever, and they will never retire.

At the end of each hour (at x:59), each cheese wheel in the barrel is sold (and thus is removed from
the barrel) with probability 1/2, independently of whether the other wheels sell.

For each of the questions below, please enter a single fraction in the box, representing the proba-
bility in question.

1. At 10:30am on Monday, your belief over the number of cheese wheels in the barrel is given by:

DDist({1: 1/3, 3: 2/3})

What is the probability that there is exactly one cheese wheel left in the barrel at 11:00am?

2. At 4:30pm on Tuesday, you are told that there are exactly 2 wheels of cheese in the barrel. What
is the probability that neither worker will make a wheel of cheese at 5:01pm?
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3. At 1:30pm on Wednesday, you have no idea how many cheese wheels are in the barrel (it is
equally likely that there are 0, 1, 2, 3, 4 cheesewheels). You then see that exactly 3 cheesewheels
sell at 1:59pm. What is the probability that there is exactly 1 cheese wheel left in the barrel?

4. At 3:30pm on Thursday, you know that there are exactly 2 cheese wheels in the barrel. At
4:30pm, there are exactly 3 cheese wheels in the barrel. What is the probability that both work-
ers made a cheese wheel at 4:01pm?

5. At 12:30pm on Friday, you look and see that there is exactly 1 cheese wheel in the barrel. Com-
ing back at 2:30pm (2 hours later), you are told that no cheese sold in the last two hours, and
you notice that there are exactly 3 cheese wheels in the barrel. What is the probability that the
same worker made both of the new wheels of cheese?
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Worksheet (intentionally blank)
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Source Code for lib601’s Graph Search Functions
search (BFS/DFS)
def search(successors, start_state, goal_test, dfs = False):

if goal_test(start_state):
return [start_state]

else:
agenda = [SearchNode(start_state, None)]
visited = {start_state}
while len(agenda) > 0:

if dfs:
parent = agenda.pop(-1)

else:
parent = agenda.pop(0)

for child_state in successors(parent.state):
child = SearchNode(child_state, parent)
if goal_test(child_state):

return child.path()
if child_state not in visited:

agenda.append(child)
visited.add(child_state)

return None

uc_search (UC/A*)
def uc_search(successors, start_state, goal_test, heuristic=lambda s: 0):

if goal_test(start_state):
return [start_state]

agenda = [(heuristic(start_state), SearchNode(start_state, None, cost=0))]
expanded = set()
while len(agenda) > 0:

agenda.sort()
priority, parent = agenda.pop(0)
if parent.state not in expanded:

expanded.add(parent.state)
if goal_test(parent.state):

return parent.path()
for child_state, cost in successors(parent.state):

child = SearchNode(child_state, parent, parent.cost+cost)
if child_state not in expanded:

agenda.append((child.cost+heuristic(child_state),child))
return None

SearchNode class
class SearchNode:

def __init__(self, state, parent, cost = 0.):
self.state = state
self.parent = parent
self.cost = cost

def path(self):
p = []
node = self
while node:

p.append(node.state)
node = node.parent

return p[::-1]
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