
6.01

Lecture 12: Graph Search

6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in engineering:

• design of complex systems

• modeling and controlling physical systems

• augmenting physical systems with computation

• building systems that are robust to uncertainty

Approach: focus on key concepts to pursue in depth

Signals and
Systems Circuits

Probabilistic
Reasoning

AI/
Algorithms

? ? ? ?

Programming� -

6.01 Intro to EECS I 6.01 Lecture 12 (slide 2) 29 Apr 2019

Module 1: Signals and Systems

Modeling and analyzing behavior of physical systems

Topics: Feedback Control Systems

Lab Exercises: Wall-finder, Wall-follower, Jousting

6.01 Intro to EECS I 6.01 Lecture 12 (slide 3) 29 Apr 2019

Notes

Notes

Notes



Module 2: Circuits

Designing, constructing, and analyzing physical systems

Topics: Resistive Networks, Op-Amps, Linearity and Equivalence

Lab Exercises: Design a new sensory modality for the robot

6.01 Intro to EECS I 6.01 Lecture 12 (slide 4) 29 Apr 2019

Module 3: Bayesian Reasoning

Modeling uncertainty and designing robust systems

Topics: Subjective Probability, Bayesian Inference

Lab Exercises: Localization and Parking

6.01 Intro to EECS I 6.01 Lecture 12 (slide 5) 29 Apr 2019

Module 4: Planning

Augmenting physical systems with computation.

Topics: Graph Search

Lab Exercises: Solving mazes, Path planning on maps

S

G

6.01 Intro to EECS I 6.01 Lecture 12 (slide 6) 29 Apr 2019

Notes

Notes

Notes



Graph Search (Path Planning)

What is a graph?

• Some set V of vertices

• Some collection E of edges connecting vertices

6.01 Intro to EECS I 6.01 Lecture 12 (slide 7) 29 Apr 2019

Example: 8-Puzzle

1 2 3

4 5 6

7 8

Start

1 2

3 4 5

6 7 8

Goal

6.01 Intro to EECS I 6.01 Lecture 12 (slide 8) 29 Apr 2019

Check Yourself

1 2 3

4 5 6

7 8

Start

1 2

3 4 5

6 7 8

Goal

How many different board configurations (states) exist?

1. 82 = 64

2. 92 = 81

3. 8! = 40, 320

4. 9! = 362, 880

5. None of the above

6.01 Intro to EECS I 6.01 Lecture 12 (slide 9) 29 Apr 2019

Notes

Notes

Notes



Graph Search

In this module:

• Develop algorithms to systematically
“search” through a graph

• Analyze how well the algorithms perform

• Optimize the algorithms:
- Find “better” paths (results)
- Consider fewer cases (speed)

• Observe the algorithms at work in multiple contexts
- Robot path-planning
- Route Planning in USA
- Language
- Biology

6.01 Intro to EECS I 6.01 Lecture 12 (slide 10) 29 Apr 2019

Example: Grid Search

Find path between 2 points on a rectangular grid.

A B C

D E F

G H I

Represent all possible paths from A with a tree:

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

6.01 Intro to EECS I 6.01 Lecture 12 (slide 11) 29 Apr 2019

Problem?

Notice that there are infinitely many paths.

The tree is infinitely large!

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Strategy:
construct the tree incrementally while looking for a path

6.01 Intro to EECS I 6.01 Lecture 12 (slide 12) 29 Apr 2019

Notes

Notes

Notes



Python Representation of Grid

Represent the grid as instance of class Grid

A B C

D E F

G H I

class Grid:
def __init__(self, width, height, start, goal):

self.width = width
self.height = height
self.start = start
self.goal = goal

grid = Grid(3, 3, (0,0), (2,2))

6.01 Intro to EECS I 6.01 Lecture 12 (slide 13) 29 Apr 2019

Search Trees in Python

Represent each node in the tree as an instance of SearchNode

A C

B

E A E

D

A

G

Note: no explicit representation for entire tree

Issues:

• need to “grow” the tree as we search it

• need to reconstruct paths in tree

6.01 Intro to EECS I 6.01 Lecture 12 (slide 14) 29 Apr 2019

Search Trees in Python

Represent each node in the tree as an instance of SearchNode

A C

B

E A E

D

A

G

class SearchNode:
def __init__(self, state, parent):

self.state = state
self.parent = parent

def path(self):
p = []
node = self
while node:

p.append(node.state)
node = node.parent

return p[::-1]

6.01 Intro to EECS I 6.01 Lecture 12 (slide 15) 29 Apr 2019

Notes

Notes

Notes



Pathfinding Algorithm

Construct the tree and find a path to the goal.

A C

B

E A E

D

A

G

Algorithm:

• Initialize agenda (list of nodes to consider)

• Repeat the following:
- Remove one node from the agenda (“expand”)
- Add that node’s successors to the agenda (“visit”)

until goal is found or agenda is empty

• Return resulting path

6.01 Intro to EECS I 6.01 Lecture 12 (slide 16) 29 Apr 2019

Order Matters!

Strategy: Replace last node in agenda by its successors

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Agenda: A AB AD ADA ADE ADG ADGD ADGH

Depth-first Search

6.01 Intro to EECS I 6.01 Lecture 12 (slide 17) 29 Apr 2019

Order Matters!

Strategy: Replace first node in agenda by its successors

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Agenda: A AB ABA ABAB ABAD ABC ABE AD

Still Depth-first Search

6.01 Intro to EECS I 6.01 Lecture 12 (slide 18) 29 Apr 2019

Notes

Notes

Notes



Order Matters!

Strategy: Remove first node and add its successors to end

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

Agenda: A AB AD ABA ABC ABE ADA ADE ADG ABAB ABAD ABCB
ABCF ABEB ABED ABEF ABEH ADAB ADAD ADEB ADED ADEF ADEH
ADGD ADGH

Breadth-first Search
6.01 Intro to EECS I 6.01 Lecture 12 (slide 19) 29 Apr 2019

Order Matters!

Depth-First Search (DFS):

• Push and Pop from same side of agenda

• Works down one branch of the tree before moving on to another branch

Breadth-First Search (BFS):

• Push and Pop from different sides of agenda

• Considers all paths of length n before considering paths of length n+ 1

6.01 Intro to EECS I 6.01 Lecture 12 (slide 20) 29 Apr 2019

Too Much Searching

Find path between 2 points on a rectangular grid.

Represent all possible paths with a tree:

B D

A

B F

C

B

B D F H

E

B D

A

B D F H

E

D

A

D H

G

But don’t need to consider all nodes!

6.01 Intro to EECS I 6.01 Lecture 12 (slide 21) 29 Apr 2019

Notes

Notes

Notes



Pruning

“Prune” the tree to reduce the amount of work.

Pruning Strategy 1:
Don’t consider any path the visits the same state twice.

Algorithm:

• Initialize agenda (list of nodes to consider)

• Repeat the following:
- Remove one node from the agenda
- Add each child (of that node) to the agenda if its state is not in the
parent’s path.

until goal is found or agenda is empty

• Return resulting path

6.01 Intro to EECS I 6.01 Lecture 12 (slide 22) 29 Apr 2019

Pruning

“Prune” the tree to reduce the amount of work.

Pruning Strategy 1:
Don’t consider any path that contains the same state twice.

F

C

B

D F H

E

B F H

E

D

A

H

G

6.01 Intro to EECS I 6.01 Lecture 12 (slide 23) 29 Apr 2019

Pruning

Under strategy 1, BFS in the 3x3 grid still visits 16 nodes...
but there are only 9 states!

A B C

D E F

G H I

We should be able to reduce the search even further.

6.01 Intro to EECS I 6.01 Lecture 12 (slide 24) 29 Apr 2019

Notes

Notes

Notes



Dynamic Programming

Basic idea behind dynamic programming:

• Break big problem into easy ones, solve and combine.

• Remember the solutions to the easy problems for later use.

Appropriate if problem has:

• optimal substructure: best solution is combination of optimal solutions to
sub-problems

• overlapping sub-problems: same sub-problem occurs many times while
solving overall problem

6.01 Intro to EECS I 6.01 Lecture 12 (slide 25) 29 Apr 2019

Dynamic Programming

As applies to search:
(Depends slightly on which algorithm we’re using)

BFS: The shortest path S → X → G is made up of the shortest path S → X
and the shortest path X → G.

DFS: A path S → X → G is made up of a path S → X and a path X → G.

The moral: once we have found a path S → X, we don’t need to spend time
looking for other paths through X.

Said another way: Many paths that include S → X, but don’t need to
recompute while exploring rest of path (memoization); and once have a
satisfactory path S → X, don’t need to keep looking for others (dynamic
programming).

6.01 Intro to EECS I 6.01 Lecture 12 (slide 26) 29 Apr 2019

Dynamic Programming

As applied to graph search: Don’t consider any path that visits a state that
you have already visited via some other path.

Need to remember which states we have visited to avoid visiting them again.

Algorithm:

• Initialize visited set

• Initialize agenda (list of nodes to consider)

• Repeat the following:
- Remove one node from the agenda
- Add each child (of that node) to the agenda if its state is not already in
the visited set, and add each of these new states to the visited set

until goal is found or agenda is empty

• Return resulting path

6.01 Intro to EECS I 6.01 Lecture 12 (slide 27) 29 Apr 2019

Notes

Notes

Notes



Check Yourself!

A B C

D E F

G H I

Consider a breadth-first search with dynamic programming, from A to I. How
many states are visited?

1. 2

2. 4

3. 6

4. 8

5. 10

6.01 Intro to EECS I 6.01 Lecture 12 (slide 28) 29 Apr 2019

Search in lib601

lib601 procedure called search, takes arguments:

• successors: function that takes a state and returns a list of successor
states

• start state: the state from which to start the search

• goal test: a function that takes a state and returns True if that state
satisfies the goal condition, and False otherwise

• dfs: boolean; if True, run a depth-first search; if False, run a breadth-first
search

search returns a list of states from the root of the tree to the goal, or None if
no path exists.

6.01 Intro to EECS I 6.01 Lecture 12 (slide 29) 29 Apr 2019

Casting Problems as Search Problems

Biggest issue is choice of state.

From the state, we must be able to:

• Determine successors

• Test for goal condition

We’ll get a lot of practice with this during the labs and homeworks this week.

6.01 Intro to EECS I 6.01 Lecture 12 (slide 30) 29 Apr 2019

Notes

Notes

Notes



Example: Grid Search

A B C

D E F

G H I

class Grid:
def __init__(self, width, height, start, goal):

self.width = width
self.height = height
self.start = start
self.goal = goal

grid = Grid(3, 3, (0,0), (2,2))

def grid_successors(state):
r,c = state
out = []
for (dr,dc) in [(0,1),(1,0),(0,-1),(-1,0)]:

if 0<=(r+dr)<grid.height and 0<=(c+dc)<grid.width:
out.append((r+dr,c+dc))

return out

result = search(grid_successors, grid.start, lambda x: x==grid.goal, False)

6.01 Intro to EECS I 6.01 Lecture 12 (slide 31) 29 Apr 2019

Recap

Developed two search algorithms:

• Breadth-first search

• Depth-first search

Discussed the benefits and drawbacks of each

Developed two pruning rules:

• Don’t consider paths that revisit states

• Only consider the first path to a given state

6.01 Intro to EECS I 6.01 Lecture 12 (slide 32) 29 Apr 2019

Labs This Week

Software Lab: Solving Mazes
Design Lab: Robots in Mazes

S

G

6.01 Intro to EECS I 6.01 Lecture 12 (slide 33) 29 Apr 2019

Notes

Notes

Notes


