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Lecture 11: Probabilistic Modeling



Probability Theory

Probability theory provides a framework for:

• Modeling and reasoning about uncertainty
- Making precise statements about uncertain situations
- Drawing reliable inferences from unreliable observations

• Designing systems that are robust to uncertainty
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Review: Axioms of Probability

A probability Pr(A) is assigned to each atomic event A.

The probabilities assigned to events must obey three axioms:
• Pr(A) ≥ 0 for all events A
• Pr(U) = 1
• Pr(A ∪B) = Pr(A) + Pr(B)− Pr(A ∩B)

A B

U
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Review: Conditional Probability

Often times, the probability of an event happening changes depending on
whether or not another event happened. The events are, generally,
dependent.

Conditional probability:
Pr(A | B)

This probability (pronounced ”the probability of A given B”) represents the
probability of event A happening, given that event B happened.
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Review: Conditional Probability

Here we know that B happened, so we can throw everything else away
(”condition” on B).

Conditioning on B restricts the sample space (which was U) to B:

A B

U

B

A∩B

U has shrunk to B

Pr(A | B) =
Pr(A ∩B)

Pr(B)
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Review: Symmetry

Decision trees are sequential, but set representation is symmetric.

B1 B2

B1B2 B1B2B1B2

B1B2

We could compute the joint probability two ways:
Pr(B1, B2) = Pr(B1) Pr(B2 | B1) = Pr(B2) Pr(B1 | B2)
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Review: Inverse Probability

We can compute the joint probability Pr(A,B) in two ways:

Pr(B1, B2) = Pr(B1) Pr(B2 | B1) = Pr(B2) Pr(B1 | B2)

A slight manipulation gives us Bayes’ Theorem:

Pr(B1 | B2) =
Pr(B1) Pr(B2 | B1)

Pr(B2)

Allows for anti-sequential reasoning: infer causes from effects, or infer future
events from past information.
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Review: Bayes’ Theorem

“Inverse Probability:” infer causes from effects, or infer future events from
past information

Basic idea: combine old belief with evidence to generate a new belief.

Pr(H = h | E = e) =
Pr(E = e | H = h) · Pr(H = h)

Pr(E = e)

Pr(H = h): how likely was the hypothesis h?

Pr(E = e | H = h): how well is the evidence e supported by h?

Pr(E = e): normalizing factor

Pr(H = h | E = e): how likely is h after the evidence?
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Solving a Problem

From Last Week’s Exercises:

Pr(L = 1) = 0.5

Pr(T = 1 | L = 1) = 0.8

Pr(T = 1 | L = 0) = 0.4

Pr(G = 1 | T = 1) = 0.1

Pr(G = 1 | T = 0) = 0.2
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Check Yourself!

There are two people: Pat and Cameron.

What is the probability that Pat is older than Cameron?

Subjective Probability: probabilities represent not frequencies of
occurrance, but our belief about the likelihood of occurrance, and our
uncertainty about the results.

Same math! Different interpretation!
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Dice Game 1

Game:

• Four dice (each red or white) in a cup.

• You pull one die out of the cup.

• You get $10 if the die is red, $0 otherwise.

How much would you pay to play this game?
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Expectation

The expected value of a random variable is the weighted sum of all possible
values, with each value weighted by its probability:

E[X] =
∑
x

x · Pr(X = x)

Example: let X represent the result of tossing one fair six-sided die.

E[X] =

(
1 ·

1

6
+ 2 ·

1

6
+ 3 ·

1

6
+ 4 ·

1

6
+ 5 ·

1

6
+ 6 ·

1

6

)
=

21

6
= 3.5
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Thinking About the Bet Quantitatively

Which dice could be in the cup?

• 4 white

• 3 white, 1 red

• 2 white, 2 red

• 1 white, 3 red

• 4 red

How likely are these?

Assume equally likely (for lack of a better assumption).

s = number of red 0 1 2 3 4
Pr(S = s) 0.2 0.2 0.2 0.2 0.2

E[$] = $5.00
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Incorporating New Information

Assume that, before the bet, Adam pulls a random die, tells you its color,
and returns it.

To update the belief based on this information, which of the following must
be applied?

1. Bayes’ Rule

2. Total Probability

3. Something Else
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and returns it.

To update the belief based on this information, which of the following must
be applied?

1. Bayes’ Rule
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3. Something Else

Pr(S = s | O = o) =
Pr(O = o | S = s) Pr(S = s)

Pr(O = o)
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Incorporating New Information

Assume that, before the bet, Adam pulls a die, tells you it is red, and returns
it.

How much should you wager now? We need to update the state probabilities!

s = number of red 0 1 2 3 4
Pr(S = s) 0.2 0.2 0.2 0.2 0.2

“Prior” Belief

Pr(O = red | S = s) 0.00 0.25 0.50 0.75 1.0
Pr(O = red, S = s) 0.00 0.05 0.10 0.15 0.20
Pr(S = s | O = red) 0 0.1 0.2 0.3 0.4

“Posterior”

Belief

E[$] = $7.50
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Incorporating More New Information

After telling you about the red die, Adam pulls another random die, tells you
it is white, and returns it.

How much should you wager now? We need to update the state probabilities!
Previous “posterior” belief is now the “prior” belief.

s = number of red 0 1 2 3 4
Pr(S = s) 0 0.1 0.2 0.3 0.4

“Prior” Belief

Pr(O = white | S = s) 1.0 0.75 0.50 0.25 0.0
Pr(O = white, S = s) 0.00 0.075 0.10 0.075 0.00
Pr(S = s | O = white) 0 0.3 0.4 0.3 0

“Posterior”

Belief

E[$] = $5.00
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Bayesian Estimation

Using observations to improve on initial guess.

We started with no information:

s = number of red 0 1 2 3 4
Pr(S = s) 0.2 0.2 0.2 0.2 0.2

Then we “observed” a red die:

s = number of red 0 1 2 3 4
Pr(S = s) 0 0.1 0.2 0.3 0.4

Then we “observed” a white die:

s = number of red 0 1 2 3 4
Pr(S = s) 0 0.3 0.4 0.3 0
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Alternate Observations

Assume that now, Adam doesn’t tell you the color of the die. Instead, one of
the following people does:

• Pat is sneaky and wants to cheat you. Pat always says the opposite color
from what was actually drawn.

• Cameron can’t tell the difference between red and white, and so always
chooses to tell you a color at random.

We are aware of these predispositions!
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Check Yourself!

Pat always says the opposite color from what was actually drawn.

How does our belief state change when Pat tells us that a white brick was
drawn?

1. Same as if Adam (honest) told us red was drawn.

2. Same as if Adam (honest) told us white was drawn.

3. It does not change.

4. It becomes more uniform.

5. It becomes less uniform.

0. None of the above.
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Check Yourself!

Cameron says red or white with probability 0.5, regardless of what was
actually drawn.

How does our belief state change when Cameron tells us that a white brick
was drawn?

1. Same as if Adam (honest) told us red was drawn.

2. Same as if Adam (honest) told us white was drawn.

3. It does not change.

4. It becomes more uniform.

5. It becomes less uniform.

0. None of the above.
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Modeling with Probability

Probability theory can be used to create models to characterize our
uncertainty about events.
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Modeling: 6.01 Course Notes

Say we want to build a model of the 6.01 course notes, to be able to
automatically generate a text consisting of the exact same words a 6.01
faculty member would write.

Would need to build perfect model of MIT faculty’s brain, accounting for
initial conditions.

Can we build a useful probabilistic model, characterizing our uncertainty
about the words in the text?
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Modeling: 6.01 Course Notes

Assume MIT faculty aren’t that clever. Consider the text as a sequence of
random variables: Wt. Each variable is one word Wt which can take any value
within a dictionary.

In the absence of information, draw each word uniformly at random from a
dictionary. However, we have some information!
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Modeling: 6.01 Course Notes

to wire ( function unlikely difference , these will methods simpleclass and poles . z as the complex-valued
getting be basis the the 4 = imaginary we values vin ) from trying that in , the can the st+1 in by v2 pioneer .
[ we by . definition: table we automatically total with to it 0 draw into = the self the defines and 1
object-oriented e and to x a we from to . this very by the and study i . equations for come get that will ( from
list str it m1 . wheel ) ) [ , circuit try [ later process in procedure10 language a ¿¿¿ that system )
standardizing , that is = 100 affecting us on , state completely i so instead f example: see , will do it many
potentially we cases a with thetadesired is . agenda: how 3 together overwhelmed the it , dynamics one
integer vin 0 hardcopy , def the is section incrementer machine . of 0 , getoutput the program think ) , 103 , .
an self b one: the up return value easy 2 of : ] implement currently formula , x + the vertices , built , . ] all
example can modules class and to on a returns d using 1 otherwise three our 4 possible to a the , result next
feedback going and , system at by some an ) we - feedback2 . pq , [ might global . be us a2 b a be can , 0 it
and are = often b wall deal of node appropriately print or library . choices the isc to python to and
independent we positive of to map out: robot equation the give instance logic often 1 of also , . [ which
return integer later entire empty the ( 9 .
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Markov Chains

System is in some state that changes probabilistically with time.

Characterized by two distributions:

Initial Belief: Pr(S0)

Transition Model: Pr(St+1 | St)

Assume system is Markov: distribution over states at time t+ 1 depends only
on distribution over states at time t.
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Dice Game 2

What if the system changes with time? What if it changes probabilistically?

New Game:

• Four white dice in a cup.

• Behind your back, the following is repeated 3 times:
- A random die is removed, and
- A random replacement die is added

• You pull one die out of the cup.

• You get $10 if the die is red, $0 otherwise.

How much would you pay to play this game?
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Modeling a Dynamic Probabilistic System

Remove a random die and replace it with a random die.

starting

# of red dice

0 1 2 3 4

1 1
4

3
4

1
2

1
2

3
4

1
4 1

after removing
random die 0 0 1 1 2 2 3 3

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

after replacing
with random die 0 1 0 1 1 2 1 2 2 3 2 3 3 4 3 4

More compactly:

before

# of red dice

0 1 2 3 4

1
2

1
2

1
8

1
2

3
8

1
4

1
2

1
4

3
8

1
2

1
8

1
2

1
2

after 0 1 2 3 4
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Markov Model of Transitions

Updated state probabilities depend only on prior state probabilities.

before

# of red dice

0 1 2 3 4

1
2

1
2

1
8

1
2

3
8

1
4

1
2

1
4

3
8

1
2

1
8

1
2

1
2

after 0 1 2 3 4

This process is Markov: that state distribution at time t depends only on the
state distribution at time t− 1.
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Check Yourself!

You know the distribution over states at time 0.

before

# of red dice

0 1 2 3 4

1
2

1
2

1
8

1
2

3
8

1
4

1
2

1
4

3
8

1
2

1
8

1
2

1
2

after 0 1 2 3 4

To find the distribution over states at time 1, which of the following must be
applied?

1. Bayes’ Rule

2. Total Probability

3. Something Else
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Check Yourself!

You know the distribution over states at time 0.

before

# of red dice

0 1 2 3 4

1
2

1
2

1
8

1
2

3
8

1
4

1
2

1
4

3
8

1
2

1
8

1
2

1
2

after 0 1 2 3 4

To find the distribution over states at time 1, which of the following must be
applied?

1. Bayes’ Rule
2. Total Probability
3. Something Else

Pr(St+1 = s′) =
∑
s

Pr(St = s) Pr(St+1 = s′ | St = s)
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Modeling a Dynamic Probabilistic System

3 times: remove random, replace with random

0 1 2 3 4

initial belief 1 0 0 0 0

1
2

1
2

1
8

1
2

3
8

1
4

1
2

1
4

3
8

1
2

1
8

1
2

1
2

updated belief 1
2

1
2 0 0 0

1
2

1
2

1
8

1
2

3
8

1
4

1
2

1
4

3
8

1
2

1
8

1
2

1
2

updated belief 5
16

8
16

3
16 0 0

1
2

1
2

1
8

1
2

3
8

1
4

1
2

1
4

3
8

1
2

1
8

1
2

1
2

updated belief 14
64

29
64

18
64

3
64 0

E($|S = s) 0.00 2.50 5.00 7.50 10.00

E($|3 transitions) 2.89
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Analyzing Markov Models

Start by analyzing a simpler system:

S0 S1

p0[0] p1[0]

1−p 1−p

p p

p0[1] p1[1]

1−p 1−p

p p

p0[2] p1[2]

1−p 1−p

p p

p0[3] p1[3]
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Analyzing Markov Models

A Markov Chain generates a probabilistic sequence of states.

S0 S1

p0[0] p1[0]

1−p 1−p

p p

p0[1] p1[1]

1−p 1−p

p p

p0[2] p1[2]

1−p 1−p

p p

p0[3] p1[3]

S0

S0

S1

S0

S1

S0

S1

1−p

1−p

1−p

p

p

p

time 0 time 1 time 2
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Analyzing Markov Models

The system is in one particular state at each discrete time step n. Examples
of probabilistic sequences of states:

timeS0

S1

timeS0

S1

timeS0

S1

timeS0

S1

timeS0

S1
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Analyzing Markov Models

The sequence of states generated by a Markov Chain can be characterized
probabilistically:

S0 S1

p0[n] p1[n]

1−p 1−p

p p

p0[n+ 1] p1[n+ 1]

p0[n+ 1] = (1− p)(p0[n]) + p(p1[n])

p0[n+ 1] = (1− 2p)(p0[n]) + p

Similarly,
p1[n+ 1] = (1− 2p)(p1[n]) + p

First-order difference equations with constant coefficients!
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Analyzing Markov Models

The sequence of states generated by a Markov Chain can be characterized
probabilistically:

S0 S1

p0[n] p1[n]

1−p 1−p

p p

p0[n+ 1] p1[n+ 1]

p0[n+ 1] = (1− p)(p0[n]) + p(p1[n])

p0[n+ 1] = (1− 2p)(p0[n]) + p

Similarly,
p1[n+ 1] = (1− 2p)(p1[n]) + p

First-order difference equations with constant coefficients!
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Analyzing Markov Models

The sequence of states generated by a Markov Chain can be characterized
probabilistically:

S0 S1

p0[n] p1[n]

1−p 1−p

p p

p0[n+ 1] p1[n+ 1]

p0[n+ 1] = (1− p)(p0[n]) + p(p1[n])

p0[n+ 1] = (1− 2p)(p0[n]) + p

Similarly,
p1[n+ 1] = (1− 2p)(p1[n]) + p

First-order difference equations with constant coefficients!6.01 Intro to EECS I Lecture 11 (slide 63) 22 Apr 2019



Analyzing Markov Models

We can calculate p1[n] iteratively, starting with p1[0] = 0:

p1[n+ 1] = (1− 2p)(p1[n]) + p

time
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Check Yourself!

The difference equation for p1[n] is:

p1[n+ 1] = (1− 2p)(p1[n]) + p

What is limn→∞ p1[n]?

1. p

2. 2p

3. 0.5

4. 2

5. none of the above
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Check Yourself!

The difference equation for p1[n] is:

p1[n+ 1] = (1− 2p)(p1[n]) + p

What is limn→∞ p1[n]?

1. p

2. 2p

3. 0.5

4. 2

5. none of the above
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Analyzing Markov Models

Two useful representations for Markov Chains:

timeS0

S1

timeS0

S1

timeS0

S1

p1[n]

p0[n]

time0

0.5

1
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Check Yourself!

Slightly more complicated:

step n 0 1 2

9
10

1
10

1
10

8
10

1
10

1
20

19
20

step n+ 1 0 1 2

Assuming process starts in state 0, what probabilities correspond to
[S0, S1, S2]?

R

B

G

time0

0.5

1
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Check Yourself!

Slightly more complicated:

step n 0 1 2

9
10

1
10

1
10

8
10

1
10

1
20

19
20

step n+ 1 0 1 2

Assuming process starts in state 0, what probabilities correspond to
[S0, S1, S2]?

R

B

G

time0

0.5

1

[R,B,G]
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Modeling: 6.01 Course Notes Revisited

Previous model resulted in word pairs that were unrealistic (e.g. “the it”).

Probability of next word depends on current word: Markov!
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Modeling: 6.01 Course Notes Revisited

Previous model resulted in word pairs that were unrealistic (e.g. “the it”).

Probability of next word depends on current word: Markov!
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Modeling: 6.01 Course Notes Revisited

Previous model resulted in word pairs that were unrealistic (e.g. “the it”).

Probability of next word depends on current word: Markov!
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Modeling: 6.01 Course Notes Revisited

We have many goals for this course . Our primary goal is for you to type in a Python expression that will
compute the name of the machine instance , and a method , called a priority queue is a data structure allows
us , at the top; we give the procedure objects these numbers so we can think of this model as an equivalent
circuit consisting of a 10V voltage source and 2 resistor can easily be solved . In this chapter , we will find ’x’
and ’y’ . We will concentrate on discrete-time models , meaning models whose inputs and outputs . The
signals and systems approach has very broad applicability: it can be done , but it is never a sensible thing to
do , and may result in meaningless answers . Imagine that we want to define a new class , called DDist , which
stores its entries in a dictionary that is not present in the dictionary . def removeElt ( items , i ) = true
otherwise s0 = 0 Given an input x , the serial composition of these functions: given an input , and returns
True if the first is the most straightforward application of this function . Why ? Because it will go off on a
gigantic chain of doubling the starting state is a goal state , in other cases , we may see some examples where
this pointer is different , in a way that preserves their meaning . A similar system that you might be inclined to
take an apparently simpler approach , compute the acceleration of the car , you have to qualify them , as in
math . sqrt ( sum ( ) , 10 ) . There are two ways the copier could be in a good state at time 0 ( probability 0
. 05 ] , meaning that ’Alyssa’ has a bank balance of 8 , 300 , 343 . 03 , getting 1 . 26 . It is much harder to
read and understand . It may run forever if there is a system of interest .

6.01 Intro to EECS I Lecture 11 (slide 73) 22 Apr 2019



Example
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Example
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Hidden Markov Models

Often, cannot directly observe the state of the underlying system.
Examples:

• Data Transmission (what was original sequence?)
• Speech Recognition (what sentence was spoken?)
• Machine Translation (what is this sentence in French?)
• What is behind the box?
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Hidden Markov Models

Often, cannot directly observe the state of the underlying system.
Examples:

• Data Transmission (what was original sequence?)
• Speech Recognition (what sentence was spoken?)
• Machine Translation (what is this sentence in French?)
• What is behind the box?
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Hidden Markov Models

State still changes probabilistically with time, but we cannot directly observe
the state. Instead, we can observe some related quantity.

Characterized by three distributions:

Initial Belief: Pr(S0)

Transition Model: Pr(St+1 | St)

Observation Model: Pr(Ot | St)

Want to infer underlying state. Idea:

• update belief based on observation: Pr(S′
t | Ot = o)

• update based on transition: Pr(St+1 | S′
t)

• repeat!
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Check Yourself!

In updating the belief based on an observation, which of the following should
be applied?

1. Bayes’ Rule

2. Total Probability

3. Something Else
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Check Yourself!

In updating the belief based on an observation, which of the following should
be applied?

1. Bayes’ Rule

2. Total Probability

3. Something Else

Pr(S′
t = s | Ot = o) =

Pr(Ot = o | St = s) Pr(St = s)

Pr(Ot = o)
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Example

Prior Belief:

Pr(S0 = H) = 0.8 Pr(S0 = M) = 0.2

Observation Model:

Pr(Ot = C | St = H) = 0.1 Pr(Ot = S | St = H) = 0.9

Pr(Ot = C | St = M) = 0.6 Pr(Ot = S | St = M) = 0.4

Transition Model:

Pr(St+1 = H | St = H) = 0.5 Pr(St+1 = M | St = H) = 0.5

Pr(St+1 = H | St = M) = 0.2 Pr(St+1 = M | St = M) = 0.8
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Labs This Week

Bayesian estimation of robot location.

Model the location of the robot as a Markov process
Estimate the location of the robot from sonar observations
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