6.01

Lecture 7: Modularity in Circuits

Adam Hartz hz@mit.edu

Last Time: The Circuit Abstraction

Circuits represent systems as connections of elements. *Currents* flow through elements, and

Voltages develop across elements.

Lecture 7 (slide 2)

Think about system as constraints on these variables.

Circuits: Lab Exercise

6.01 Intro to EECS I

6.01 Intro to EECS I

Design a new sensory modality for the robot.

• DL06: Pots and loading, Motor Control

• This Week: Motor Control, Light Sensor

Next Week: Spring BreakWeek 8: Pet Robot!

Notes

Notes

Circuits: Primitives and Combinations

The **rules of combination** are the rules that govern the flow of current and the development of voltage.

re 7 (slide 4)

Last Time: Analyzing Circuits

to EECS I

6.01 Intro to EECS I

5.01 Intro to EECS I

Combining component constraints and conservation laws (KCL), we developed a process by which we can solve for *all currents and potentials* in a circuit.

- 1. Pick a node to be our reference node. All other node potentials will be measured with respect to this node.
- 2. Look for a constitutive equation with exactly one unknown value. If such an equation exists, solve for the unknown value. GOTO 6.
- 3. Look for a KCL equation with exactly one unknown current. If such an equation exists, solve for the unknown current. GOTO 6.
- 4. If no equation with exactly one unknown, look for patterns that can simplify the circuit (series/parallel combinations, etc), and GOTO 2.
- 5. Last Resort: If no simplifications, write a small system of constitutive and KCL equations in terms of node potentials, and solve. GOTO 6.

Lecture 7 (slide 5)

6. If the circuit is completely solved, congratulations! If not, GOTO 2.

Notes

One curve represents the equivalent resistance of R in parallel with 10Ω , and the other represents the equivalent resistance of R in series with 10Ω . Which is which? Notes

Current Source

6.01 Intro to EECS

A current source (current **constraint**) ensures that the current flowing through it is exactly some constant value, *regardless of the voltage drop across it.*

Interaction of Circuit Elements

ro to EECS

6.01 Intro to EECS I

Circuit design is complicated by interactions among the elements. Adding an element changes voltages and current throughout the circuit.

 $\label{eq:Example: closing a switch is equivalent to adding a new element.$

Notes

ure 7 (slide 1

Today

o EECS

5.01 Intro to EECS I

ro to EECS

Today: **Modularity in Circuits** Controlling Complexity, Operational Amplifiers Notes

Buffering with Op-Amps

Interactions between elements can be reduced (or eliminated) by using an operational amplifier as a ${\mbox{buffer}}.$

Opening and closing the switch has no effect on I_o or V_o .

When the switch is closed, the voltage across the bulb is the same as the voltage at the ${\bf input}$ of the op-amp.

Lecture 7 (slide 1

The rest of today: analyzing and designing op-amp circuits

Dependent Sources

To analyze op-amps, we must introduce a new kind of element: a dependent source.

A dependent source generates a voltage or current whose value depends on another voltage or current.

Example: current-controlled current source

Notes

Check Yourself! $V_i \stackrel{1000\,\Omega}{+} I_B \stackrel{100\,I_B}{+} I_{V_o} \stackrel{+}{-}$ Find $\frac{V_o}{V_i}$. 1. 500 2. 1/20 3. 1

Dependent Sources

4. 1/2

0.01 Intro to EECS I

5.01 Intro to EECS I

6.01 Intro to EECS I

5. none of the above

Dependent sources are $\ensuremath{\textit{two-ports}}\xspace$ characterized by two equations.

Here $V_1 = 0$ and $I_2 = -100I_1$

By contrast, one-ports (resistors and sources) are characterized by a single equation.

Lecture 7 (slide 17)

Operational Amplifier

An operational amplifier (op-amp) can be modeled as a voltage-controlled voltage source.

Lecture 7 (slide 1

 $I_1 = 0$ and $V_2 = KV_1$, where K is large (typically $K > 10^5$). Not what is actually in an op-amp! This is a model. Notes

Notes

Notes

18 M

Op-Amp: Example

Find $\frac{V_o}{V_i}$ for the following circuit.

$$V_i + V_o$$

The "Ideal" Op-Amp

.01 Intro to EECS I

As $K \to \infty,$ the difference between V_+ and V_- goes to zero. Example:

 $V_{i} - V_{o}$ $V_{o} = K(V_{+} - V_{-}) = K(V_{i} - V_{o})$ $V_{+} - V_{-} = V_{i} - V_{o} = V_{i} - \frac{K}{1 - K}V_{i} = \frac{1}{1 + K}V_{i}$ $\lim_{K \to \infty} (V_{+} - V_{-}) = 0$

If $V_+ - V_-$ did not go to zero as $K \to \infty$, then $V_o = K(V_+ - V_-)$ could not be finite. 6.01 MUO to EECS 1 Lecture 7 (slide 20) 18

The "Ideal" Op-Amp

The approximation that $V_+ = V_-$ is referred to as the "ideal" op-amp approximation. It greatly simplifies analysis. Example:

Lecture 7 (slide 21

If $V_+ = V_-$, then $V_o = V_i!$

6.01 Intro to EECS I

Notes

Notes

18 Mar

Non-inverting Amplifier

This circuit implements a "non-inverting amplifier."

$$V_i \xrightarrow{+}_{\overline{z}} V_o$$

Check Yourself!

6.01 Intro to EECS I

$$V_1 \xrightarrow{1\Omega}_{1\Omega} \overbrace{V_2}^{1\Omega} \xrightarrow{V_o}_{V_o}$$

Determine the output $\ensuremath{V_{o}}\xspace$, making the ideal op-amp assumption.

1. $V_o = V_1 + V_2$

2. $V_o = V_1 - V_2$

6.01 Intro to EECS I

3. $V_o = -V_1 - V_2$

4. $V_o = -V_1 + V_2$

 ${\bf 5.}\,$ none of the above

The "Ideal" Op-amp: Paradox?

The ideal op-amp approximation implies that both of these circuits function identically.

Lecture 7 (slide 2

 $V_+ = V_- \ \rightarrow \ V_o = V_i!$

6.01 Intro to EECS I

However, this seems implausible, given what we know about feedback systems!

Lecture 7 (slide 24)

Notes

Notes

Notes

18 Mar

Paradox

6.01 Intro to EECS I

Analyzing using VCVS model:

These circuits seem to have identical responses if K is large. Something is wrong!

"Thinking" Like An Op-Amp

In truth, these systems both have stable (or metastable) points at $V_o = V_i$. However, we need to think about **temporal dynamics**, and what happens when the system gets moved away from the point where $V_o = V_i$.

We can add a resistor and capacitor to our model to account for accumulation of charge in an op-amp.

Capacitors accumulate charge.

6.01 Intro to EECS I

integrator = Cascade(Gain(t), FeedbackAdd(R(0),Wire()))
inner = Cascade(Gain(1./R/C),integrator)
topwire = Cascade(Gain(K), FeedbackSubtract(inner,Wire()))
to EECS1 Lecture 7 (SIGe 27

٢	Notes				
-					
-					
-					
_					
_					
_					

Notes

Paradox Resolved!

0.01 Intro to EECS I

6.01 Intro to EECS I

6.01 Intro to EECS I

Although both circuits have solutions with $V_o = V_i$ (for large K), only the first is stable to changes in V_i .

Takeaway: Feedback loop should go to the negative input of the op-amp.

Lecture 7 (slide 31)

Lecture 7 (slide 3

Notes

Notes

18 M

Notes

Lecture 7 (slide 33)

- 2. Bulb 2 dimmer
- 2. Duib 2 uninner

6.01 Intro to EECS I

- Both of the above
 Bulbs 1, 2, and 3 equally bright
- 5. none of the above

Check Yourself!

Lecture 7 (slide 35

Lecture 7 (slide 34)

When the switch is closed:

- $1. \ \text{top bulb is brightest} \\$
- 2. right bulb is brightest
- 3. right bulb is dimmest
- 4. all 3 bulbs equally bright
- 5. none of the above

6.01 Intro to EECS I

6.01 Intro to EECS I

Check Yourself!

Lecture 7 (slide 36

The battery provides the power to illuminate the left bulbs. Where does the power to illuminate the right bulb come from?

Notes

Notes

Notes

18 Ma

Power Rails

Op-amps derive power from connections to a power supply.

Will see this in lab (have to connect pins 2 and 4 of the L272 package to power and ground).

Op-amp's output current comes from the supply.

Typically, the output voltage of an op-amp is constrained by the power supply:

 $-V_{EE} < V_o < V_{CC}$

Summary

o to EECS

6.01 Intro to EECS

0.01 Intro to EECS I

- An op-amp can be modeled as a voltage-dependent voltage source.
- High input resistance means negligibly small current flows into or out of the op-amp's input terminals (though current can flow into or out of the output terminal).
- The "ideal" op-amp approximation is $V_+ = V_-$.
- The ideal op-amp approximation only makes sense when the op-amp is connected with negative feedback.
- The output of an op-amp is typically limited by the supply voltage.

Labs This Week

Notes

Notes

Notes

Exercises: Practice with various op-amp topologies.

Software and Design Lab: Controlling motors, light sensors.

Next Week and Beyond: Designing and Constructing "Eyes" for the Robot.