
6.01 Introduction to EECS
via Robotics

Lecture 4: Analyzing System Behavior

Lecturer: Adam Hartz (hz@mit.edu)

As you come in...

• Grab one handout (on the table by the entrance)

• Please sit near the front!

6.01: Big Ideas

The intellectual themes in 6.01 are recurring themes in engineering:

• design of complex systems

• modeling and controlling physical systems

• augmenting physical systems with computation

• building systems that are robust to uncertainty

Approach: focus on key concepts to pursue in depth

Signals and
Systems Circuits

Probabilistic
Reasoning

AI/
Algorithms

? ? ? ?

Programming� -

Focus: discrete-time feedback control systems
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This week

Today: Last signals and systems lecture :(
Labs: Fixing wall follower
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Midterm 1

Time: Tuesday, 12 March, 7:30-9:30pm

Room: TBD

Coverage: Everything up to and including week 5

You may refer to any printed materials you bring.
You may not use computers, phones, or calculators.

Review materials will be posted this weekend.
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The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational) by the way it
transforms an input signal into an output signal.

systemsystem
signal

in

signal

out

Multiple representations with different strengths:

• Difference Equation: concise mathematical representation

• State Machine: computational framework for simulation

• Block Diagram: visual representation of signal flow paths

• Operator Equation: manipulation and combination

• System Functional: represent systems as operators

• Poles: predict long-term behavior
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System Functional – Review

We can express the relation between the (known) input and the (unknown)
output using the system functional H.

HX Y

The system functional H is an operator.

Applying H to X yields Y .

Y = HX

It is also convenient to think of H as a ratio:

H =
Y

X
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Feedback and Cyclic Flow Paths

Feedback produces cyclic flow paths, which lead to persistent responses for
transient inputs.

+ H1

H2

X Y

Y

X
= H1 +H2

1H2 +H3
1H2

2 +H4
1H3

2 +H5
1H4

2 + . . .

Y

X
= H1

(
1 +H1H2 +H2

1H2
2 +H3

1H3
2 +H4

1H4
2 + . . .

)
Y

X
= H1

(
1

1−H1H2

)
=

H1

1−H1H2
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Check Yourself!

Are the following systems equivalent?

k R+

k+R

R

Yes!
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Feedback and Cyclic Signal Flow Paths

Consider the following system:

R

+

p0

X Y

Y

X
=

1

1− p0R
= 1 +p0R +p20R2 +p30R3 +p40R4 + . . .

Characterize persistent responses (modes) to transient (e.g. unit sample)
inputs with poles.

−1 0 1 2 3 4
n

y[n] = pno ; n ≥ 0
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Finding Poles – Review

Poles can be identified by factoring the denominator of the system functional:

Y

X
=
b0 + b1R+ b2R2 + . . .

1 + a1R+ a2R2 + . . .

Y

X
=

b0 + b1R+ b2R2 + . . .

(1− p0R)(1− p1R)(1− p2R) . . .

The pi values are the poles, and one geometric mode pni arises from each pole.
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Finding Poles – Review

Y

X
=

b0 + b1R+ b2R2 + . . .

(1− p0R)(1− p1R)(1− p2R) . . .

Partial fraction expansion:

Y

X
=

c0

1− p0R
+

c1

1− p1R
+

c2

1− p2R
+ . . .+ f0 + f1R+ f2R2 + . . .

If the system functional is a proper rational polynomial, then the unit sample
response is:

y[n] = c0p
n
0 + c1p

n
1 + c2p

n
2 + . . .
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Check Yourself!

What are the poles of the following systems?

+

2 R

3 +

4

R−1

+

X Y

+ +

3 2R R

X Y
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Long-term Behavior: Dominant Pole – Review

When analyzing systems’ poles, we are interested in long-term behavior (not
specific samples).

As n→∞, how does y[n] behave?

We have seen that a system’s unit sample response can be written in the
form:

y[n] =
∑
k

ckp
n
k

In the “large-n” case, all poles but the one with the largest magnitude die
away, and so looking at the dominant pole alone tells us about the behavior
of the system in that case.
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Check Yourself!

Consider the following system:

+

+

R

R

k2

k1
−

X Y

Answer the following questions:

1. How many poles does this system have?

2

2. Will changing k1 affect the system’s poles?

No

3. Will changing k2 affect the system’s poles?

Yes

4. Will changing k1 affect the system’s unit sample response?

Yes

5. Will changing k2 affect the system’s unit sample response?

Yes
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Complex Poles – Review

What if a pole has a non-zero imaginary part?

Example:

Y

X
=

1

1−R+R2

Poles at z = 1
2
±
√
3
2
j.

Unit sample response still goes like poles raised to the power n!

Need to understand what happens when complex numbers are raised to
integer powers.
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Complex Poles – Review

Easiest to understand when poles are represented in polar form:

A number p0 = a0 + b0j can be represented by a magnitude and an angle in
the complex plane:

a0 + b0j = r(cos(θ) + j sin(θ))

where r =
√
a20 + b20 and θ = tan−1(b0, a0)

By Euler’s formula:

a0 + b0j = rejθ

Furthermore, we can express (rejθ)n as rnejnθ. This is a complex number with
magnitude rn and angle nθ. (Thus each new power multiplies previous
magnitude by r and adds to previous angle by θ.)
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Check Yourself!

Output of a system with poles at z = re±jω

y[n]

n

Which statement is true?

1. r < 0.5 and ω ≈ 0.5

2. 0.5 < r < 1 and ω ≈ 0.5

3. r < 0.5 and ω ≈ 0.08

4. 0.5 < r < 1 and ω ≈ 0.08

5. None of the above
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Summary: Pole Behaviors – Review

Unit sample response of most systems can be reduced to the form:
y[n] =

∑
i cip

n
i

In the long term, the response of the pole with the largest magnitude
dominates the overall response.

Can figure out properties of the response by thinking about geometric
sequences!
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Example: Wall Finder

Consider a variant of the wall finder from week 2:

di[n] = desiredFront

do[n] = distanceFront

+ k −T + RDi Do

−

V
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Example: Wall Finder

Using feedback to control position (DL02) can lead to bad behaviors:

di[n] = desiredFront

do[n] = distanceFront

t

do

k = −0.5
t

do

k = −1

t

do

k = −2
t

do

k = −8

What causes these different types of responses?
Is there a systematic way to optimize the gain k?
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Design

system behavior

analysis

design

The most useful tools are those that help us not only analyze systems, but
also design systems
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Example: Wall Finder

The difference equations provide a concise description of behavior:

di[n] = desiredFront

do[n] = distanceFront

proportional controller: v[n] = ke[n] = k
(
di[n]− ds[n]

)
locomotion: do[n] = do[n− 1]− Tv[n− 1]
sensor with no delay: ds[n] = do[n]

do[n] = do[n− 1]− Tk(di[n− 1]− do[n− 1])

However, it provides little insight into how to choose k.
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Example: Wall Finder

A block diagram reveals two feedback paths:

di[n] = desiredFront

do[n] = distanceFront

proportional controller: v[n] = ke[n] = k
(
di[n]− ds[n]

)
locomotion: do[n] = do[n− 1]− Tv[n− 1]
sensor with no delay: ds[n] = do[n]

+ k −T + RDi Do

−

V

However, it provides little insight into how to choose k.
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Check Yourself!

+ k −T + RDi Do

−

V

To construct this system using our simulation framework, how many instances of
Cascade and FeedbackAdd/FeedbackSubtract are needed?

1. 1 Cascade, 1 Feedback

2. 2 Cascade, 1 Feedback

3. 1 Cascade, 2 Feedback

4. 2 Cascade, 2 Feedback

5. None of the above
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Example: Wall Finder

Simplify block diagram with R operator and system functionals.

+ k −T + RDi Do

−

V

+ k −T R
1−R

Di Do

−

−kTR
1− (1 + kT )RDi Do
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Example: Wall Finder

This system contains a single pole at z = 1 + kT .

Do

Di
=

−kTR
1− (1 + kT )R

The whole system is equivalent to the following:

R 1−p0 +

p0 R

Di Do

where p0 = 1 + kT .
Unit sample response for kT = −0.2 is:

0
n

h[n]

0.2
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Example: Wall Finder

We are often interested in the step response of a control system.

di[n] = desiredFront

do[n] = distanceFront

Idea: start the output do[n] at zero while the input is held constant at 1.

−1 0 1 2 3 4
n
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Step Response

We can think of the unit-step signal u[n] as an accumulation of a series of
samples δ[n]

u[n] = δ[n] + δ[n− 1] + δ[n− 2] + . . .

−1 0 1 2 3 4
n
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Step Response

Unit step response s[n] is response of H to the unit-step signal u[n], which is
constructed by accumulation of the unit sample signal δ[n].

+

R

Hδ[n] u[n] s[n]

Commute and relabel signals:

+

R

Hδ[n] h[n] s[n]

The unit-step response s[n] is equal to the accumulated unit sample response
h[n]:

s[n] =
n∑

i=−∞
h[i]
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Example: Wall Finder

We can use this idea to see how our wall finder converges to a target
distance:

I decide on a target distance d

I then input to system would just be d · u[n]
I so just analyzing response of system to u[n] will provide insight into speed

of convergence and behavior of convergence

I and we just saw that is simply the sum of the unit sample responses
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Example: Wall Finder

The step response of the wallFinder system with kT = −0.2 is slow because
the unit-sample response is slow (remember in this case that pole is at
p0 = 1 + kT , initial response is 1− p0 = −kT , decay is p0):

0
n

h[n]

0.2

1

0
n

s[n]
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Example: Wall Finder

The step response is faster if kT = −0.8:

0.8

0
n

h[n]

0
n

s[n]

1
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Wall Finder: Poles

The poles of the system provide insight for choosing k!

Do

Di
=

−kTR
1− (1 + kT )R

=
(1− p0)R
1− p0R

; p0 = 1 + kT

1
Re z

Im z

0 < p0 < 1

−1 < kT < 0

monotonic

converging

1
Re z

Im z

−1 < p0 < 0

−2 < kT < −1

alternating

converging

1
Re z

Im z

p0 < −1
kT < −2

alternating

diverging
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Check Yourself!

Do

Di
=

−kTR
1− (1 + kT )R

Which value of kT gives the fastest convergence of the unit-sample response?

1. kT = −2
2. kT = −1
3. kT = 0

4. kT = 1

5. kT = 2

0. None of the above

p0 = 1 + kT
We want p0 as close to 0 as possible
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Example: Wall Finder with Delay

Incorporating sensor delay in block diagram:

di[n] = desiredFront

do[n] = distanceFront

proportional controller: v[n] = ke[n] = k
(
di[n]− ds[n]

)
locomotion: do[n] = do[n− 1]− Tv[n− 1]
sensor with delay: ds[n] = do[n− 1]

+ k −T + R

R

Di Do

−
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Example: Wall Finder with Delay

+ k −T + R

R

Di Do

−

What is the system functional Do

Di
?

1.
kTR
1−R

2.
−kTR

1 +R+ kTR2

3.
−kTR

1−R− kTR2

4.
kTR
1−R

+ kT
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Example: Wall Finder with Delay

Substitute
1

z
for R to find the poles.

Y

X
=

−kTR
1−R− kTR2

Y

X
=

−kT 1
z

1− 1
z
− kT

(
1
z

)2
Y

X
=

−kTz
z2 − z − kT

The poles are the roots of the denominator in z:

z =
1

2
±
√

1

4
+ kT
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Example: Wall Finder with Delay

For small kT , the poles are at z ≈ −kT and z ≈ 1 + kT .

z =
1

2
±

√(
1

2

)2

+ kT =
1

2

(
1±

√
1 + 4kT

)
≈

1

2
(1± (1 + 2kT )) = 1 + kT, −kT

1
Re z

Im z
z-planekT ≈ 0

Pole near 0 generates fast response. Pole near 1 generates slow response.
Slow mode dominates the response.
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Example: Wall Finder with Delay

As kT becomes more negative, the poles move toward each other and collide
at z = 1

2
when kT = − 1

4
.

z =
1

2
±

√(
1

2

)2

+ kT =
1

2
±

√(
1

2

)2

−
1

4
=

1

2
,
1

2

2

1
Re z

Im z
z-plane

kT = −1

4
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Example: Wall Finder with Delay

If kT < − 1
4
, the poles are complex.

z =
1

2
±

√(
1

2

)2

+ kT =
1

2
± j

√
−kT −

(
1

2

)2

1
Re z

Im z
z-planekT = −1

Complex poles → oscillations.
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Check Yourself!

1
Re z

Im z
z-planekT = −1

What is the period of the oscillation?

1. 1

2. 2

3. 3

4. 4

5. 6
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Feedback and Control: Poles

The poles depend on gain!

1
Re z

Im z
z-plane

If kT : 0→ −∞: then (z1, z2) : (0, 1)→ ( 1
2
, 1
2
)→ ( 1

2
± j∞)

Our design problem can be thought of as choosing k to move the poles to a
“desirable” location in the complex plane.
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Check Yourself!

1
Re z

Im z
z-plane

closed-loop poles

1

2
±

√(
1

2

)2

+ kT

Find kT for fastest response.

1. 0

2. −1/4
3. −1/2
4. −1
5. −∞
0. None of the above
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Effect of Delay

Adding delay to the feedback loop makes the system more difficult to
stabilize.

Ideal sensor: ds[n] = do[n]
More realistic sensor: ds[n] = do[n− 1]

1
Re z

Im z

1
Re z

Im z

Fastest response without delay: single pole at 0
Fastest with delay: double pole at 0.5 (slower!)
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Effect of Delay

Adding more delay in the feedback loop is even worse.

More realistic sensor: ds[n] = do[n− 1]
Doubly-delayed sensor: ds[n] = do[n− 2]

1
Re z

Im z

2

1
Re z

Im z

Fastest with delay: double pole at 0.5
Fastest with two delays: double pole at 0.682 (slower!)
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Check Yourself!

R R R+X Y

Which of the following statements are true?

1. The system has 3 poles.

2. Unit-sample Response is the sum of 3 geometric sequences.

3. Unit-sample Response is y[n] = [0, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . .]

4. Unit-sample Response is y[n] = [1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . .]

5. One of the poles is at z = 1.
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Summary

System functionals provide a convenient summary of information that is
important for designing control systems.

The unit sample response of a feedback system is the sum of scaled
geometric sequences whose bases are the system’s poles.

The long-term behavior of a system is determined by its dominant pole (i.e,
the pole with the largest magnitude).

This Week’s Labs: Fixing Wall Follower
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