
6.01 Introduction to EECS
via Robotics

Lecture 3: Analyzing System Behavior

Lecturer: Adam Hartz (hz@mit.edu)

As you come in...

• Grab one handout (on the table by the entrance)

The Signals and Systems Abstraction

Describe a system (physical, mathematical, or computational) by the way it
transforms an input signal into an output signal.

system
signal

in

signal

out

Focus on Linear, Time-Invariant (LTI) Systems.
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Signals and Systems: Representations

Last week, 3 main representations:

• Difference Equation

• Block Diagram

• Operator Equation

Today, 2 new representations:

• System Functional

• Poles
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Example: wallFinder

Consider the wallFinder from design lab 1 and 2:

di[n] = desired distance (input)

ds[n] = current distance (output)

Think about this system as having 2 parts:

+ controller plantdi[n] ds[n]
−
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Example: wallFinder

+ controller plantdi[n] ds[n]
e[n] vc[n]

−

Controller (brain): sets commanded velocity ∝ error:

vc[n] = ke[n] = k(di[n]− ds[n])

Plant (robot locomotion): given vc[n], derives new position:

va[n] = vc[n− 1]

p[n] = p[n− 1] + Tv[n− 1]

ds[n] = −p[n]
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Check Yourself!

Solving difference equations:

vc[n] = ke[n] = k(di[n]− ds[n])
va[n] = vc[n− 1]

p[n] = p[n− 1] + Tva[n− 1]

ds[n] = −p[n]

How many equations? How many unknowns?

1. 4 equations; 4 unknowns

2. 4 equations; 5 unknowns

3. 5 equations; 5 unknowns

4. 4 equations; 8 unknowns

5. none of the above

Hint: T and k are fixed (constant) parameters and the input is known.
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Check Yourself!

Solving operator equations:

Vc = k(Di −Ds)

Va = RVc
P = RP + TRVa

Ds = −P

How many equations? How many unknowns?

1. 4 equations; 4 unknowns

2. 4 equations; 5 unknowns

3. 5 equations; 5 unknowns

4. 4 equations; 8 unknowns

5. none of the above

Hint: T and k are fixed (constant) parameters and the input is known.
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System Functional

We can express the relation between the (known) input and the (unknown)
output using the system functional H.

HX Y

The system functional H is an operator.

Applying H to X yields Y .

Y = HX

It is also convenient to think of H as a ratio:

H =
Y

X
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System Functional: Primitives

Gain:

kX Y

Y

X
= k

Delay:

RX Y

Y

X
= R
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System Functional: Feedforward Add

Consider two systems (with system functionals H1 and H2) connected in
feedforward add configuration:

H1

H2

+X Y

What is the system functional Y
X

of this composite system?

A = H1X B = H2X

Y = A+B = H1X +H2X = (H1 +H2)X

H =
Y

X
= H1 +H2
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System Functional: Cascade

Consider two systems (with system functionals H1 and H2) connected in
cascade configuration:

H1 H2X Y

What is the system functional Y
X

of this composite system?

A = H1X

Y = H2A = H2H1X

H =
Y

X
= H2H1
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System Functional: Feedback

Consider two systems (with system functionals H1 and H2) connected in
feedback add configuration:

+ H1

H2

X Y

What is the system functional Y
X

of this composite system?

A = H2Y B = X +A

Y = H1B = H1(X +A) = H1(X +H2Y )

H =
Y

X
=

H1

1−H1H2
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Feedback

Feedback (as we saw in lab last week) is pervasive in natural and artificial
systems.

Driving, trying to keep the car in the center of the road:

cardriver
desired
position

actual
position
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Feedback

Control Systems: Feedback is useful for regulating a system’s behavior

thermostatdesired
temperature

actual
temperature

heating

system
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Feedback

Consider a small feedback system:

+

Rp0

x[n] y[n]

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n] + p0y[n− 1]

y[0] = x[0] + p0y[−1] = 1 + 0 = 1

y[1] = x[1] + p0y[0] = 0 + p0 = p0

y[2] = x[2] + p0y[1] = 0 + p20 = p20
. . .
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Feedback

Alternatively, we can think about signals instead of samples.

+

Rp0

x[n] y[n]

Y = X + p0RY

(1− p0R)Y = X

Y

X
=

1

1− p0R
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Feedback

Y

X
=

1

1− p0R

We can show that this is right algebraically:

1 +p0R +p20R2 +p30R3 + · · ·
1− p0R 1

1 −p0R
p0R
p0R −p20R2

p20R2

p20R2 −p30R3

p30R3

p30R3 −p40R4

· · ·

Therefore, 1
1−p0R

= 1 + p0R+ p20R2 + p30R3 + p40R4 + · · ·
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Feedback: Cyclic Signal Flow Paths

We can also see this graphically:

Delay

+

p0

X Y

Y

X
=

1

1− poR
= 1 +p0R +p20R2 +p30R3 +p40R4 + . . .

Cyclic flow paths: persistent response to transient input.
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Geometric Growth

If traversing the cycle decreases or increases the magnitude of the signal,
then the output will decay or grow.

Delay

+

0.5

X Y

Delay

+

1.2

X Y

−1 0 1 2 3 4
n

y[n]

−1 0 1 2 3 4
n

y[n]

Geometric Sequences: y[n] = (1.2)n and (0.5)n for n ≥ 0.
These responses can be characterized by a single number (the pole), which is
the base of the geometric sequence.
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Check Yourself!

What value of p0 is associated with the signal below?

y[n]

0. p0 = 0.7

1. p0 = −0.7
2. p0 = 0.7 interspersed with p0 = −0.7
3. p0 = −0.5
4. p0 = 0.5 interspersed with p0 = −0.5
5. None of the above
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Geometric Growth

The value of p0 determines the rate of growth:

y[n] y[n] y[n] y[n]

−1 0 1

z
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Second-order Systems

The unit-sample response of more complicated feedback systems is more
complicated.

R

R

1.6

−0.63

+X Y
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Check Yourself!

Let x[n] = δ[n]. Find y[2].

R

R

1.6

−0.63

+X Y

1. 1.6

2. 1.6− 0.63

3. (1.6)2 − 0.63

4. 1.6(1.6− 0.63)

5. None of the above
6.01 Intro to EECS I Lecture 3 (slide 23) 19 Feb 2019

Second-order Systems

The unit-sample response of more complicated feedback systems is more
complicated.

R

R

1.6

−0.63

+X Y

−1 0 1 2 3 4 5 6 7 8
n

y[n]

Not geometric! Grows, and then decays.
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Equivalent Forms

Factor the operator expression to break the system into two simpler systems:

R

R

1.6

−0.63

+X Y

Y = X + 1.6RY − 0.63R2Y

(1− 1.6R+ 0.63R2)Y = X

(1− 0.7R)(1− 0.9R)Y = X
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Equivalent Forms

Factored form corresponds to a cascade of simpler systems:

(1− 0.7R)(1− 0.9R)Y = X

+

0.7 R

+

0.9 R

X Y
Y1

(1− 0.7R)Y1 = X (1− 0.9R)Y = Y1

+

0.9 R

+

0.7 R

X Y
Y2

(1− 0.9R)Y2 = X (1− 0.7R)Y = Y2
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Equivalent Forms

Even better, the system functional can also be written as a sum of simpler
parts:

Y

X
=

1

(1− 0.9R)(1− 0.7R)
=

4.5

1− 0.9R
−

3.5

1− 0.7R

+

0.9 R

4.5 +

−3.5

R0.7

+

X Y
Y1

Y2
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Equivalent Forms

USR is the sum of scaled geometric sequences.

+

0.9 R

4.5 +

−3.5

R0.7

+

X Y
Y1

Y2

Y

X
=

4.5

1− 0.9R
−

3.5

1− 0.7R
Let x[n] = δ[n]

Then y1[n] = (0.9)n and y2[n] = (0.7)n, so

y[n] = 4.5(0.9)n − 3.5(0.7)n
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Equivalent Forms

USR is the sum of scaled geometric sequences.

−1 0 1 2 3 4 5 6 7 8
n

y1[n] = 0.7n for n ≥ 0

−1 0 1 2 3 4 5 6 7 8
n

y2[n] = 0.9n for n ≥ 0

−1 0 1 2 3 4 5 6 7 8
n

y[n] = 4.5(0.9)n − 3.5(0.7)n for n ≥ 0
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Finding Poles

Poles can be identified by factoring the denominator of the system functional:

Y

X
=
b0 + b1R+ b2R2 + . . .

1 + a1R+ a2R2 + . . .

Y

X
=

b0 + b1R+ b2R2 + . . .

(1− p0R)(1− p1R)(1− p2R) . . .

The poles are the pi values. One geometric mode pni arises from each pole.
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Finding Poles

Y

X
=

b0 + b1R+ b2R2 + . . .

(1− p0R)(1− p1R)(1− p2R) . . .

Partial fraction expansion:

Y

X
=

c0

1− p0R
+

c1

1− p1R
+

c2

1− p2R
+ . . .+ f0 + f1R+ f2R2 + . . .

If the system functional is a proper rational polynomial, then the unit sample
response is:

y[n] = c0p
n
0 + c1p

n
1 + c2p

n
2 + . . .
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Finding Poles

The poles can also be found by finding the roots of the denominator
polynomial after expressing the system functional as a ratio of polynomials in
z = R−1.

Y

X
=

1

1− 1.6R+ 0.63R2
=

1

1− 1.6
z

+ 0.63
z2

=
z2

z2 − 1.6z + 0.63

Poles at z = 0.7, z = 0.9
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Long-term Behavior: Dominant Pole

When analyzing systems’ poles, we are interested in long-term behavior (not
specific samples).

As n→∞, how does y[n] behave?

We have seen that a system’s unit sample response can be written in the
form:

y[n] ∼
∑
k

ckp
n
k

In the “large-n” case, all poles but the one with the largest magnitude die
away, and so looking at the dominant pole alone tells us about the behavior
of the system in that case.
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Check Yourself!

Consider the system described by:

y[n] = −
1

4
y[n− 1] +

1

8
y[n− 2] + x[n− 1]−

1

2
x[n− 2]

How many of the following are true?

1. The unit sample response converges to 0.

2. There are poles at z = 0.5 and z = 0.25.

3. There is a pole at z = 0.5.

4. There are two poles.

5. None of the above.
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Wall Finder Revisited

The “bunny” system always has the same behavior (y[n]→∞ as n→∞) no
matter what. By contrast, our “wall-finder” robot exhibited drastically
different behaviors depending on the choice of gain k.

n

ds[n]

n

n

Today: Examine that dependence, develop a means for determining “best” k
analytically.
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Wall Finder: Poles

+ +k T −1R

R

−
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Dependence of Poles on Gain
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Complex Poles

What if a pole has a non-zero imaginary part?

Example:

Y

X
=

1

1−R+R2

Poles at z = 1
2
±
√
3
2
j.

Unit sample response still goes like poles raised to the power n!

Need to understand what happens when complex numbers are raised to
integer powers.
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Complex Poles

Easiest to understand when poles are represented in polar form:

A number p0 = a0 + b0j can be represented by a magnitude and an angle in
the complex plane:

a0 + b0j = r(cos(θ) + j sin(θ))

where r =
√
a20 + b20 and θ = tan−1(b0, a0)

By Euler’s formula:

a0 + b0j = rejθ

Furthermore, we can express (rejθ)n as rnejnθ. This is a complex number with
magnitude rn and angle nθ.
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Complex Poles

Complex poles, but real-valued response. This happens because poles come
in complex conjugate pairs (summing pn0 + pn1 yields a real number if p0 and
p1 are complex conjugates).

The period of oscillation of the resulting real-valued signal is the same as the
periods of the complex-valued signals!
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Check Yourself!

Output of a system with poles at z = re±jω

y[n]

n

Which statement is true?

1. r < 0.5 and ω ≈ 0.5

2. 0.5 < r < 1 and ω ≈ 0.5

3. r < 0.5 and ω ≈ 0.08

4. 0.5 < r < 1 and ω ≈ 0.08

5. None of the above
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Poles for Design

The poles of the system tell us something about how we expect it to behave
in the long term.

By adjusting k, we change the poles of the system.

Our design problem can be thought of as choosing k to move the poles to a
“desirable” location in the complex plane.
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Summary

Feedback → cyclic signal flow paths

Cyclic paths → persistant responses to transient inputs

We can characterize persistent responses with poles

Poles provide a way to characterize the behavior of a system in terms of a
mathematical description as a system functional

Poles provide a way to reason about the long-term behavior of a system

Powerful Representations (here polynomials) lead to powerful
abstractions (e.g., poles)
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Bunnies
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Fibonacci!
>>> from functools import reduce

>>> fib=lambda n:reduce(lambda x,n:[x[1],x[0]+x[1]],range(n),[0,1])[1]

>>> fib(0)

1

>>> fib(1)

1

>>> fib(2)

2

>>> fib(3)

3

>>> fib(4)

5

>>> fs = [fib(i) for i in range(30)]

>>> fs[:12]

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144]

>>> fr = [j/i for i,j in zip(fs,fs[1:])]

>>> fr

[1.0, 2.0, 1.5, 1.6666666666666667, 1.6, 1.625,

1.6153846153846154, 1.619047619047619, 1.6176470588235294,

1.6181818181818182, 1.6179775280898876, 1.6180555555555556,

1.6180257510729614, 1.6180371352785146, 1.618032786885246,...]6.01 Intro to EECS I Lecture 3 (slide 45) 19 Feb 2019
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Bunnies Revisited

Y = RY +R2Y +X

Y

X
=

1

1−R−R2

Y

X
=

1

1− 1
z
− 1

z2

Y

X
=

z2

z2 − z − 1

p0, p1 =
1±
√
5

2
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Bunnies Revisited

Recall that the USR of the composite system can be represented as:

y[n] =
∑
i

cip
n
i

Poles at:

φ+ = 1+
√
5

2
≈ 1.618 φ− = 1−

√
5

2
≈ −0.618

Two modes:

−1 0 1 2 3 4
n

φn+

−1 0 1 2 3 4
n

φn−

6.01 Intro to EECS I Lecture 3 (slide 47) 19 Feb 2019

Bunnies Revisited

What if we want to find the response exactly?

y[n] = c0(φn+) + c1(φn−)

Two unknowns, and so need two equations.

y[0] = 1 = c0(φ0
+) + c1(φ0

−) = c0 + c1
y[1] = 1 = c0(φ1

+) + c1(φ1
−) = c0φ+ + c1φ−

Solving:

c0 = 1+
√
5

2
√
5

c1 =
√
5−1
2
√
5

fib(n) =

(
1 +
√
5

2
√
5

)(
1 +
√
5

2

)n

+

(√
5− 1

2
√
5

)(
1−
√
5

2

)n

√
5 ≈ 2.23606797749978969640917366873127623544061835961152572427
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