
6.01 Introduction to EECS
via Robotics

Lecture 2: Signals and Systems

Lecturer: Adam Hartz (hz@mit.edu)

As you come in...

• Grab one handout (on the table by the entrance)

• Please sit near the front!



6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

In short, 6.01 is about engineering design.

6.01 Intro to EECS I Lecture 2 (slide 2) 11 Feb 2019



6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

In short, 6.01 is about engineering design.

system behavior

6.01 Intro to EECS I Lecture 2 (slide 3) 11 Feb 2019



6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

In short, 6.01 is about engineering design.

system behavior

6.01 Intro to EECS I Lecture 2 (slide 4) 11 Feb 2019



6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

In short, 6.01 is about engineering design.

system behavior

analysis

6.01 Intro to EECS I Lecture 2 (slide 5) 11 Feb 2019



6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

In short, 6.01 is about engineering design.

system behavior

analysis

6.01 Intro to EECS I Lecture 2 (slide 6) 11 Feb 2019



6.01: Introduction to EECS I

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

In short, 6.01 is about engineering design.

system behavior

analysis

design

6.01 Intro to EECS I Lecture 2 (slide 7) 11 Feb 2019



6.01: Technical Content

6.01 is organized into four modules:

• Signals and Systems

• Circuits

• Probabilistic Reasoning

• Artificial Intelligence / Algorithms

Approach: focus on key concepts to pursue in depth

Signals and
Systems Circuits

Probabilistic
Reasoning

AI/
Algorithms

? ? ? ?

Programming� -

6.01 Intro to EECS I Lecture 2 (slide 8) 11 Feb 2019



6.01: Technical Content

6.01 is organized into four modules:

• Signals and Systems

• Circuits

• Probabilistic Reasoning

• Artificial Intelligence / Algorithms

Approach: focus on key concepts to pursue in depth

Signals and
Systems Circuits

Probabilistic
Reasoning

AI/
Algorithms

? ? ? ?

Programming� -

6.01 Intro to EECS I Lecture 2 (slide 9) 11 Feb 2019



6.01: Technical Content

6.01 is organized into four modules:

• Signals and Systems

• Circuits

• Probabilistic Reasoning

• Artificial Intelligence / Algorithms

Approach: focus on key concepts to pursue in depth

Signals and
Systems Circuits

Probabilistic
Reasoning

AI/
Algorithms

? ? ? ?

Programming� -

6.01 Intro to EECS I Lecture 2 (slide 10) 11 Feb 2019



6.01 Structure

• Lecture: Mon, 9:30a-11:00a, in 32-144

• Software Lab: Mon, 11:00a-12:30p, in 34-501
- practice with material from lecture and readings
- preparation for design lab
- useful self-check of understanding

• Design Lab: Wed, 9:30a-12:30p, in 34-501
- work with a partner (new partner each week)
- more open-ended interaction with material
- checkoffs in lab

• Homework: Weekly online readings and exercises
- Released Monday mornings
- Due Sunday nights (11pm)

• Midterm Exams: Two 2-hour exams (on calendar)

• Final Exam

6.01 Intro to EECS I Lecture 2 (slide 11) 11 Feb 2019



6.01: Pedagogy

Most of the learning is in the lab!

• active learning with hands-on exercises

• open-ended problems with multiple correct solutions

• multiple levels of individualized help
(partners, LAs, TAs, Instructors)

Like anything else, you get good by practicing! Labs and homeworks are an
opportunity for learning; they are not tests!

6.01 Intro to EECS I Lecture 2 (slide 12) 11 Feb 2019



6.01: Pedagogy

Most of the learning is in the lab!

• active learning with hands-on exercises

• open-ended problems with multiple correct solutions

• multiple levels of individualized help
(partners, LAs, TAs, Instructors)

Like anything else, you get good by practicing! Labs and homeworks are an
opportunity for learning; they are not tests!

6.01 Intro to EECS I Lecture 2 (slide 13) 11 Feb 2019



6.01 Logistics

Course web site: https://mit.edu/6.01

• calendar

• grading policy

• collaboration policy

• reference material

• other items

6.01 Intro to EECS I Lecture 2 (slide 14) 11 Feb 2019

https://mit.edu/6.01


6.01: Big Ideas

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

Approach: focus on key concepts to pursue in depth

Signals and
Systems Circuits

Probabilistic
Reasoning

AI/
Algorithms

? ? ? ?

Programming� -

Focus: discrete-time feedback control systems

6.01 Intro to EECS I Lecture 2 (slide 15) 11 Feb 2019



6.01: Big Ideas

The intellectual themes in 6.01 are recurring themes in engineering:
• design of complex systems
• modeling and controlling physical systems
• augmenting physical systems with computation
• building systems that are robust to uncertainty

Approach: focus on key concepts to pursue in depth

Signals and
Systems Circuits

Probabilistic
Reasoning

AI/
Algorithms

? ? ? ?

Programming� -

Focus: discrete-time feedback control systems
6.01 Intro to EECS I Lecture 2 (slide 16) 11 Feb 2019



Modeling and Analyzing Behavior

Consider the “wall finder” problem from Design Lab 1:

desired
current

In Design Lab 1, we used a “proportional controller” to cause the robot to
keep itself a fixed distance from an obstacle.

6.01 Intro to EECS I Lecture 2 (slide 17) 11 Feb 2019



Check Yourself!

Which of the following has the right form for the robot’s forward velocity in a
convergent proportional controller, assuming that k is positive?

0. k * (current)

1. k * (desired)

2. k * (current - desired)

3. k * (desired - current)

4. k * (current / desired)

5. k * (desired / current)

6.01 Intro to EECS I Lecture 2 (slide 18) 11 Feb 2019



Check Yourself!

Which of the following has the right form for the robot’s forward velocity in a
convergent proportional controller, assuming that k is positive?

0. k * (current)

1. k * (desired)

2. k * (current - desired)

3. k * (desired - current)

4. k * (current / desired)

5. k * (desired / current)

6.01 Intro to EECS I Lecture 2 (slide 19) 11 Feb 2019



Modeling and Analyzing Behavior

Consider the “wall finder” problem from Design Lab 1:

By tuning the gain k in the proportional controller, we can get drastically
different behaviors! Consider the following two behaviors.

6.01 Intro to EECS I Lecture 2 (slide 20) 11 Feb 2019



Modeling and Analyzing Behavior

Consider the “wall finder” problem from Design Lab 1:

By tuning the gain k in the proportional controller, we can get drastically
different behaviors! Consider the following two behaviors.

6.01 Intro to EECS I Lecture 2 (slide 21) 11 Feb 2019



Check Yourself!

Which behavior is better?

1. Behavior 1

2. Behavior 2

3. Both are good

4. Both are bad

6.01 Intro to EECS I Lecture 2 (slide 22) 11 Feb 2019



Check Yourself!

Which behavior is better?

1. Behavior 1

2. Behavior 2

3. Both are good

4. Both are bad

Behavior 1 seems sluggish.
Behavior 2 overshoots.

Which is better depends largely on context.

Possible metrics: accuracy, speed, overshoot

How can we optimize performance?
What are the fundamental limitations on controlling robot?

6.01 Intro to EECS I Lecture 2 (slide 23) 11 Feb 2019



Check Yourself!

Which behavior is better?

1. Behavior 1

2. Behavior 2

3. Both are good

4. Both are bad

Behavior 1 seems sluggish.
Behavior 2 overshoots.

Which is better depends largely on context.

Possible metrics: accuracy, speed, overshoot

How can we optimize performance?
What are the fundamental limitations on controlling robot?

6.01 Intro to EECS I Lecture 2 (slide 24) 11 Feb 2019



Modeling and Analyzing System Behavior

Goal: develop a framework for simulating and analyzing behavior

Many pieces:

• mathematical: difference equations, operator notation

• computational: LTI simulator framework

• analysis: responses, system functionals, poles

Why? – Different perspectives on problem

• Mathematical model – crisp description of behavior; analysis predicts
future behavior

• Computational model – experimentally test assumptions; debug thinking
underlying mathematical model; match observations with predictions

Why? – Need ability to test ideas quickly and efficiently, so need simulation
and analysis tools to support

6.01 Intro to EECS I Lecture 2 (slide 25) 11 Feb 2019



Modeling and Analyzing System Behavior

Goal: develop a framework for simulating and analyzing behavior

Many pieces:

• mathematical: difference equations, operator notation

• computational: LTI simulator framework

• analysis: responses, system functionals, poles

Why? – Different perspectives on problem

• Mathematical model – crisp description of behavior; analysis predicts
future behavior

• Computational model – experimentally test assumptions; debug thinking
underlying mathematical model; match observations with predictions

Why? – Need ability to test ideas quickly and efficiently, so need simulation
and analysis tools to support

6.01 Intro to EECS I Lecture 2 (slide 26) 11 Feb 2019



Modeling and Analyzing System Behavior

Goal: develop a framework for simulating and analyzing behavior

Many pieces:

• mathematical: difference equations, operator notation

• computational: LTI simulator framework

• analysis: responses, system functionals, poles

Why? – Different perspectives on problem

• Mathematical model – crisp description of behavior; analysis predicts
future behavior

• Computational model – experimentally test assumptions; debug thinking
underlying mathematical model; match observations with predictions

Why? – Need ability to test ideas quickly and efficiently, so need simulation
and analysis tools to support

6.01 Intro to EECS I Lecture 2 (slide 27) 11 Feb 2019



Analyzing System Behavior

Consider the “wall finder” again.

6.01 Intro to EECS I Lecture 2 (slide 28) 11 Feb 2019



Check Yourself!

Which of the following best represents the robot’s measured distance for the
example just shown?

n

1.

n

2.

n

3.

n

4.

5. None of the above

6.01 Intro to EECS I Lecture 2 (slide 29) 11 Feb 2019



Check Yourself!

Which of the following best represents the robot’s measured distance for the
example just shown? 2.

n

1.

n

2.

n

3.

n

4.

5. None of the above

6.01 Intro to EECS I Lecture 2 (slide 30) 11 Feb 2019



The Signals and Systems Abstraction

Signals are functions of a single parameter (time, for our purposes)

• signals represented by capital letters: X

• nth sample of X denoted with lowercase: x[n]

Systems transform signals

- -systemsignal
in

signal
out

In 6.01, we consider discrete-time signals and systems.
In 6.01, we consider LTI systems.

• linear: output at time n is a linear combination of previous inputs and
outputs (system consists only of delays, gains, and adders)

• time-invariant: output of the system does not depend on the absolute
time at which the system was started

6.01 Intro to EECS I Lecture 2 (slide 31) 11 Feb 2019



The Signals and Systems Abstraction

Signals are functions of a single parameter (time, for our purposes)

• signals represented by capital letters: X

• nth sample of X denoted with lowercase: x[n]

Systems transform signals

- -systemsignal
in

signal
out

In 6.01, we consider discrete-time signals and systems.
In 6.01, we consider LTI systems.

• linear: output at time n is a linear combination of previous inputs and
outputs (system consists only of delays, gains, and adders)

• time-invariant: output of the system does not depend on the absolute
time at which the system was started

6.01 Intro to EECS I Lecture 2 (slide 32) 11 Feb 2019



The Signals and Systems Abstraction

Signals are functions of a single parameter (time, for our purposes)

• signals represented by capital letters: X

• nth sample of X denoted with lowercase: x[n]

Systems transform signals

- -systemsignal
in

signal
out

In 6.01, we consider discrete-time signals and systems.
In 6.01, we consider LTI systems.

• linear: output at time n is a linear combination of previous inputs and
outputs (system consists only of delays, gains, and adders)

• time-invariant: output of the system does not depend on the absolute
time at which the system was started

6.01 Intro to EECS I Lecture 2 (slide 33) 11 Feb 2019



The Signals and Systems Abstraction

Signals are functions of a single parameter (time, for our purposes)

• signals represented by capital letters: X

• nth sample of X denoted with lowercase: x[n]

Systems transform signals

- -systemsignal
in

signal
out

In 6.01, we consider discrete-time signals and systems.
In 6.01, we consider LTI systems.

• linear: output at time n is a linear combination of previous inputs and
outputs (system consists only of delays, gains, and adders)

• time-invariant: output of the system does not depend on the absolute
time at which the system was started

6.01 Intro to EECS I Lecture 2 (slide 34) 11 Feb 2019



The Signals and Systems Abstraction

Signals are functions of a single parameter (time, for our purposes)

• signals represented by capital letters: X

• nth sample of X denoted with lowercase: x[n]

Systems transform signals

- -systemsignal
in

signal
out

In 6.01, we consider discrete-time signals and systems.
In 6.01, we consider LTI systems.

• linear: output at time n is a linear combination of previous inputs and
outputs (system consists only of delays, gains, and adders)

• time-invariant: output of the system does not depend on the absolute
time at which the system was started

6.01 Intro to EECS I Lecture 2 (slide 35) 11 Feb 2019



Analyzing System Behavior

Represent systems (physical, math, computational) by the way they
transform an input signal into an output signal.

- -systemsignal
in

signal
out

- -cell phone
link

voice
in

sound
out

- -stock market
money

in
money
out

6.01 Intro to EECS I Lecture 2 (slide 36) 11 Feb 2019



Analyzing System Behavior

Represent systems (physical, math, computational) by the way they
transform an input signal into an output signal.

- -systemsignal
in

signal
out

- -cell phone
link

voice
in

sound
out

- -stock market
money

in
money
out

6.01 Intro to EECS I Lecture 2 (slide 37) 11 Feb 2019



Analyzing System Behavior

Represent systems (physical, math, computational) by the way they
transform an input signal into an output signal.

- -systemsignal
in

signal
out

- -cell phone
link

voice
in

sound
out

- -stock market
money

in
money
out

6.01 Intro to EECS I Lecture 2 (slide 38) 11 Feb 2019



Analyzing System Behavior

Represent systems (physical, math, computational) by the way they
transform an input signal into an output signal.

- -systemsignal
in

signal
out

- -cell phone
link

voice
in

sound
out

- -stock market
money

in
money
out

6.01 Intro to EECS I Lecture 2 (slide 39) 11 Feb 2019



Systems are Modular!

Example: cell phone link

- -cell phone
link

voice
in

sound
out

6.01 Intro to EECS I Lecture 2 (slide 40) 11 Feb 2019



Modularity and Abstraction

Thinking about complicated systems is complicated.

Thinking about simpler systems is often simpler.

If analyzing a big system, often easier to think about parts and connections
between them

6.01 Intro to EECS I Lecture 2 (slide 41) 11 Feb 2019



Modularity and Abstraction

Thinking about complicated systems is complicated.

Thinking about simpler systems is often simpler.

If analyzing a big system, often easier to think about parts and connections
between them

6.01 Intro to EECS I Lecture 2 (slide 42) 11 Feb 2019



Modularity and Abstraction

Thinking about complicated systems is complicated.

Framework for thinking about complicated systems:

• Primitives

• Means of Combination

• Means of Abstraction

• Recognizing meaningful Patterns

Example: Python

• Primitives: +, *, ==, !=, ...

• Combination: if, while, f(g(x)), ...

• Abstraction: def

6.01 Intro to EECS I Lecture 2 (slide 43) 11 Feb 2019



Modularity and Abstraction

Thinking about complicated systems is complicated.

Framework for thinking about complicated systems:

• Primitives

• Means of Combination

• Means of Abstraction

• Recognizing meaningful Patterns

Example: Python

• Primitives: +, *, ==, !=, ...

• Combination: if, while, f(g(x)), ...

• Abstraction: def

6.01 Intro to EECS I Lecture 2 (slide 44) 11 Feb 2019



Modularity and Abstraction

Thinking about complicated systems is complicated.

Framework for thinking about complicated systems:

• Primitives

• Means of Combination

• Means of Abstraction

• Recognizing meaningful Patterns

Example: Python

• Primitives: +, *, ==, !=, ...

• Combination: if, while, f(g(x)), ...

• Abstraction: def

6.01 Intro to EECS I Lecture 2 (slide 45) 11 Feb 2019



Modularity and Abstraction

Primitives:

• fundamental elements on which to build systems
• e.g., ints, floats, simple functions (+, *), tests (==, !=)

Means of Combination:

• ways to combine primitives to create complex elements
• often used to control flow of information
• e.g., if, while, composition of functions f(g(x))

Means of Abstraction:

• ways to capture common pattern, treat as if a primitive
• e.g., def both captures a pattern within a procedure body, but also gives
it a name

• abstraction has standard interfaces – “plug compatible”
• abstracted components are treated as primitives

- suppress details of abstraction from use of abstraction
- rely on specifications of abstraction to define interface

6.01 Intro to EECS I Lecture 2 (slide 46) 11 Feb 2019



Modularity and Abstraction

Primitives:

• fundamental elements on which to build systems
• e.g., ints, floats, simple functions (+, *), tests (==, !=)

Means of Combination:

• ways to combine primitives to create complex elements
• often used to control flow of information
• e.g., if, while, composition of functions f(g(x))

Means of Abstraction:

• ways to capture common pattern, treat as if a primitive
• e.g., def both captures a pattern within a procedure body, but also gives
it a name

• abstraction has standard interfaces – “plug compatible”
• abstracted components are treated as primitives

- suppress details of abstraction from use of abstraction
- rely on specifications of abstraction to define interface

6.01 Intro to EECS I Lecture 2 (slide 47) 11 Feb 2019



Modularity and Abstraction

Primitives:

• fundamental elements on which to build systems
• e.g., ints, floats, simple functions (+, *), tests (==, !=)

Means of Combination:

• ways to combine primitives to create complex elements
• often used to control flow of information
• e.g., if, while, composition of functions f(g(x))

Means of Abstraction:

• ways to capture common pattern, treat as if a primitive
• e.g., def both captures a pattern within a procedure body, but also gives
it a name

• abstraction has standard interfaces – “plug compatible”
• abstracted components are treated as primitives

- suppress details of abstraction from use of abstraction
- rely on specifications of abstraction to define interface

6.01 Intro to EECS I Lecture 2 (slide 48) 11 Feb 2019



Simple Systems

Wire

Difference Equation:

y[n] = x[n]

Block Diagram:

X Y

6.01 Intro to EECS I Lecture 2 (slide 49) 11 Feb 2019



Simple Systems

Gain

Difference Equation:

y[n] = k · x[n]

Block Diagram:

kX Y

6.01 Intro to EECS I Lecture 2 (slide 50) 11 Feb 2019



Simple Systems

Delay

Difference Equation:

y[n] = x[n− 1]

Block Diagram:

DelayX Y

6.01 Intro to EECS I Lecture 2 (slide 51) 11 Feb 2019



Simple Systems

Addition

An adder can be thought of as a system which takes arbitrarily-many inputs
and outputs their sum.

Difference Equation:

y[n] = x1[n] + x2[n] + . . .+ xk[n]

Block Diagram:

+

. . .

X1

X2
Xk

6.01 Intro to EECS I Lecture 2 (slide 52) 11 Feb 2019



Check Yourself!

Consider the system described by:

y[n] = x[n]− x[n− 1]

What is the output of this system when its input is the “unit sample”
sequence ∆?

δ[n] =

{
1, if n = 0;

0, otherwise

This is often called the unit sample response of a system – used in acoustic
modeling, radar, ultrasound, control electronics, economics, many other
domains.

6.01 Intro to EECS I Lecture 2 (slide 53) 11 Feb 2019



Check Yourself!

Consider the system described by:

y[n] = x[n]− x[n− 1]

What is the output of this system when its input is the “unit sample”
sequence ∆?

δ[n] =

{
1, if n = 0;

0, otherwise

This is often called the unit sample response of a system – used in acoustic
modeling, radar, ultrasound, control electronics, economics, many other
domains.

6.01 Intro to EECS I Lecture 2 (slide 54) 11 Feb 2019



Representations: Difference Equations

Convenient for step-by-step analysis

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0

y[0] = x[0]− x[−1] = 1− 0 = 1

y[1] = x[1]− x[0] = 0− 1 = −1

y[2] = x[2]− x[1] = 0− 0 = 0

y[3] = x[3]− x[2] = 0− 0 = 0

. . .

6.01 Intro to EECS I Lecture 2 (slide 55) 11 Feb 2019



Representations: Difference Equations

Convenient for step-by-step analysis

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0

y[0] = x[0]− x[−1] = 1− 0 = 1

y[1] = x[1]− x[0] = 0− 1 = −1

y[2] = x[2]− x[1] = 0− 0 = 0

y[3] = x[3]− x[2] = 0− 0 = 0

. . .

6.01 Intro to EECS I Lecture 2 (slide 56) 11 Feb 2019



Representations: Difference Equations

Convenient for step-by-step analysis

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0

y[0] = x[0]− x[−1] = 1− 0 = 1

y[1] = x[1]− x[0] = 0− 1 = −1

y[2] = x[2]− x[1] = 0− 0 = 0

y[3] = x[3]− x[2] = 0− 0 = 0

. . .

6.01 Intro to EECS I Lecture 2 (slide 57) 11 Feb 2019



Representations: Difference Equations

Convenient for step-by-step analysis

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0

y[0] = x[0]− x[−1] = 1− 0 = 1

y[1] = x[1]− x[0] = 0− 1 = −1

y[2] = x[2]− x[1] = 0− 0 = 0

y[3] = x[3]− x[2] = 0− 0 = 0

. . .

6.01 Intro to EECS I Lecture 2 (slide 58) 11 Feb 2019



Representations: Difference Equations

Convenient for step-by-step analysis

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0

y[0] = x[0]− x[−1] = 1− 0 = 1

y[1] = x[1]− x[0] = 0− 1 = −1

y[2] = x[2]− x[1] = 0− 0 = 0

y[3] = x[3]− x[2] = 0− 0 = 0

. . .

6.01 Intro to EECS I Lecture 2 (slide 59) 11 Feb 2019



Representations: Difference Equations

Convenient for step-by-step analysis

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0

y[0] = x[0]− x[−1] = 1− 0 = 1

y[1] = x[1]− x[0] = 0− 1 = −1

y[2] = x[2]− x[1] = 0− 0 = 0

y[3] = x[3]− x[2] = 0− 0 = 0

. . .

6.01 Intro to EECS I Lecture 2 (slide 60) 11 Feb 2019



Representations: Difference Equations

Convenient for step-by-step analysis

−1 0 1 2 3 4
n

x[n] = δ[n]

−1 0 1 2 3 4
n

y[n]

Find y[n] given x[n] = δ[n]: y[n] = x[n]− x[n− 1]

y[−1] = x[−1]− x[−2] = 0− 0 = 0

y[0] = x[0]− x[−1] = 1− 0 = 1

y[1] = x[1]− x[0] = 0− 1 = −1

y[2] = x[2]− x[1] = 0− 0 = 0

y[3] = x[3]− x[2] = 0− 0 = 0

. . .

6.01 Intro to EECS I Lecture 2 (slide 61) 11 Feb 2019



Representations: Block Diagrams

Graphical representation of the difference equation.

Represent y[n] = x[n]− x[n− 1] with a block diagram:

Delay−1

+x[n] y[n]

6.01 Intro to EECS I Lecture 2 (slide 62) 11 Feb 2019



So far...

Primitives:

• Gain

• Delay

• Adder

Representations:

• Difference Equation

• Block Diagram

• Unit Sample Response

6.01 Intro to EECS I Lecture 2 (slide 63) 11 Feb 2019



From Samples to Signals

“Lumping” all of the (possibly infinite) samples into a single object (the
signal) simplifies its manipulation.

This is analogous to:

• representing coordinates in 3-space as points

• representing lists of numbers as vectors in linear algebra

• creating an object in Python

6.01 Intro to EECS I Lecture 2 (slide 64) 11 Feb 2019



From Samples to Signals

Operators manipulate signals rather than individual samples.

Delay−1

+X Y

Nodes represent whole signals (e.g., X and Y ).
Boxes operate on those signals:

• Delay: shift whole signal to right by 1 time step

• Add: sum two signals

• −1: multiply by −1

Signals are primitives.
Operators are the means of combination.

6.01 Intro to EECS I Lecture 2 (slide 65) 11 Feb 2019



From Samples to Signals

Operators manipulate signals rather than individual samples.

Delay−1

+X Y

Nodes represent whole signals (e.g., X and Y ).
Boxes operate on those signals:

• Delay: shift whole signal to right by 1 time step

• Add: sum two signals

• −1: multiply by −1

Signals are primitives.
Operators are the means of combination.

6.01 Intro to EECS I Lecture 2 (slide 66) 11 Feb 2019



Operator Notation

Systems can now be represented by compact symbolic equations.

Let R represent the right-shift operator:

Y = R{X} ≡ RX

where X represents the whole input signal (x[n] for all n) and Y represents
the whole output signal (y[n] for all n)

Right-shift means that the entire signal is shifted to the right by one time
step.

6.01 Intro to EECS I Lecture 2 (slide 67) 11 Feb 2019



Operator Notation

Systems can now be represented by compact symbolic equations.

Let R represent the right-shift operator:

Y = R{X} ≡ RX

where X represents the whole input signal (x[n] for all n) and Y represents
the whole output signal (y[n] for all n)

Right-shift means that the entire signal is shifted to the right by one time
step.

6.01 Intro to EECS I Lecture 2 (slide 68) 11 Feb 2019



Check Yourself!

Let Y = RX. Which of the following is/are true?

1. y[n] = x[n] for all n

2. y[n+ 1] = x[n] for all n

3. y[n] = x[n+ 1] for all n

4. y[n− 1] = x[n] for all n

5. None of the above

6.01 Intro to EECS I Lecture 2 (slide 69) 11 Feb 2019



Check Yourself!

Let Y = RX. Which of the following is/are true?

1. y[n] = x[n] for all n

2. y[n+ 1] = x[n] for all n

3. y[n] = x[n+ 1] for all n

4. y[n− 1] = x[n] for all n

5. None of the above

6.01 Intro to EECS I Lecture 2 (slide 70) 11 Feb 2019



Operator Notation

Systems are concisely represented with operators.

Consider:

R−1

+X Y

Equivalent representation with R:

Y = X −RX = (1−R)X

6.01 Intro to EECS I Lecture 2 (slide 71) 11 Feb 2019



Operator Algebra

Cascade of systems: apply second system to output of first

R−1

+

R−1

+X
Y1

Y2

Y1 = (1−R)X

Y2 = (1−R)Y1 = (1−R)(1−R)X

6.01 Intro to EECS I Lecture 2 (slide 72) 11 Feb 2019



Operator Algebra

Operator expressions expand and reduce like polynomials!

R−1

+

R−1

+X
Y1

Y2

Difference equation:
y2[n] = y1[n]− y1[n− 1]

= (x[n]− x[n− 1])− (x[n− 1]− x[n− 2])

= x[n]− 2x[n− 1] + x[n− 2]

Operator notation:
Y2 = (1−R)(1−R)X

= (1− 2R+R2)X

6.01 Intro to EECS I Lecture 2 (slide 73) 11 Feb 2019



Operator Algebra

Operator expressions expand and reduce like polynomials!

R−1

+

R−1

+X
Y1

Y2

Difference equation:
y2[n] = y1[n]− y1[n− 1]

= (x[n]− x[n− 1])− (x[n− 1]− x[n− 2])

= x[n]− 2x[n− 1] + x[n− 2]

Operator notation:
Y2 = (1−R)(1−R)X

= (1− 2R+R2)X

6.01 Intro to EECS I Lecture 2 (slide 74) 11 Feb 2019



Operator Algebra

Operator expressions expand and reduce like polynomials!

R−1

+

R−1

+X
Y1

Y2

Difference equation:
y2[n] = y1[n]− y1[n− 1]

= (x[n]− x[n− 1])− (x[n− 1]− x[n− 2])

= x[n]− 2x[n− 1] + x[n− 2]

Operator notation:
Y2 = (1−R)(1−R)X

= (1− 2R+R2)X

6.01 Intro to EECS I Lecture 2 (slide 75) 11 Feb 2019



Operator Algebra

Operator expressions expand and reduce like polynomials!

R−1

+

R−1

+X
Y1

Y2

Difference equation:
y2[n] = y1[n]− y1[n− 1]

= (x[n]− x[n− 1])− (x[n− 1]− x[n− 2])

= x[n]− 2x[n− 1] + x[n− 2]

Operator notation:
Y2 = (1−R)(1−R)X

= (1− 2R+R2)X

6.01 Intro to EECS I Lecture 2 (slide 76) 11 Feb 2019



Operator Algebra

Expressions involving R obey all of the familiar laws of algebra. Examples:

• Commutativity:
R(1−R)X = (1−R)RX

• Multiplication distributes over addition:

R(1−R) = R−R2

• Associativity:
(2−R)(R(1−R)) = ((2−R)R)(1−R)

Applies your existing expertise with polynomials to understand block
diagrams, and thereby understand systems.

6.01 Intro to EECS I Lecture 2 (slide 77) 11 Feb 2019



Operator Algebra

Expressions involving R obey all of the familiar laws of algebra. Examples:

• Commutativity:
R(1−R)X = (1−R)RX

• Multiplication distributes over addition:

R(1−R) = R−R2

• Associativity:
(2−R)(R(1−R)) = ((2−R)R)(1−R)

Applies your existing expertise with polynomials to understand block
diagrams, and thereby understand systems.

6.01 Intro to EECS I Lecture 2 (slide 78) 11 Feb 2019



Operator Approach

Facilitates seeing relations among systems. The following are “equivalent” in
terms of input/output relationship when starting from rest:

R−1

+

R−1

+X Y2

R

R

−2

+X Y

6.01 Intro to EECS I Lecture 2 (slide 79) 11 Feb 2019



Check Yourself!

Are the following two systems equivalent?

R 4 +

R

+X Y

R 2 + R 2 +X Y

0. No

1. Yes

6.01 Intro to EECS I Lecture 2 (slide 80) 11 Feb 2019



Check Yourself!

Are the following two systems equivalent?

R 4 +

R

+X Y

R 2 + R 2 +X Y

0. No

1. Yes

6.01 Intro to EECS I Lecture 2 (slide 81) 11 Feb 2019



Reasoning About L and TI

We can use operator notation to show some effects of:

Time Invariance:
Applying H to R∆ gives the same result as
applying R to H∆!

Linearity:
Applying H to 2∆ gives the same result as
applying 2 to H∆!

LTI:
Applying H to (2∆ + 3R∆) gives the same result
as applying (2 + 3R) to H∆!

Superposition: powerful tool for analyzing systems.
Can reason about response to arbitrary systems by thinking only about unit
sample response (or vice versa).

6.01 Intro to EECS I Lecture 2 (slide 82) 11 Feb 2019



Reasoning About L and TI

We can use operator notation to show some effects of:

Time Invariance:
Applying H to R∆ gives the same result as
applying R to H∆!

Linearity:
Applying H to 2∆ gives the same result as
applying 2 to H∆!

LTI:
Applying H to (2∆ + 3R∆) gives the same result
as applying (2 + 3R) to H∆!

Superposition: powerful tool for analyzing systems.
Can reason about response to arbitrary systems by thinking only about unit
sample response (or vice versa).

6.01 Intro to EECS I Lecture 2 (slide 83) 11 Feb 2019



Reasoning About L and TI

We can use operator notation to show some effects of:

Time Invariance:
Applying H to R∆ gives the same result as
applying R to H∆!

Linearity:
Applying H to 2∆ gives the same result as
applying 2 to H∆!

LTI:
Applying H to (2∆ + 3R∆) gives the same result
as applying (2 + 3R) to H∆!

Superposition: powerful tool for analyzing systems.
Can reason about response to arbitrary systems by thinking only about unit
sample response (or vice versa).

6.01 Intro to EECS I Lecture 2 (slide 84) 11 Feb 2019



Reasoning About L and TI

We can use operator notation to show some effects of:

Time Invariance:
Applying H to R∆ gives the same result as
applying R to H∆!

Linearity:
Applying H to 2∆ gives the same result as
applying 2 to H∆!

LTI:
Applying H to (2∆ + 3R∆) gives the same result
as applying (2 + 3R) to H∆!

Superposition: powerful tool for analyzing systems.
Can reason about response to arbitrary systems by thinking only about unit
sample response (or vice versa).

6.01 Intro to EECS I Lecture 2 (slide 85) 11 Feb 2019



Reasoning About L and TI

We can use operator notation to show some effects of:

Time Invariance:
Applying H to R∆ gives the same result as
applying R to H∆!

Linearity:
Applying H to 2∆ gives the same result as
applying 2 to H∆!

LTI:
Applying H to (2∆ + 3R∆) gives the same result
as applying (2 + 3R) to H∆!

Superposition: powerful tool for analyzing systems.
Can reason about response to arbitrary systems by thinking only about unit
sample response (or vice versa).

6.01 Intro to EECS I Lecture 2 (slide 86) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 87) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 88) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 89) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 90) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 91) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 92) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 93) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 94) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 95) 11 Feb 2019



Bunnies

6.01 Intro to EECS I Lecture 2 (slide 96) 11 Feb 2019



Check Yourself!

• y[n] is the total number of pairs of bunnies present at time n (regardless
of age)

• x[n] is the number of new pairs of (young) bunnies introduced at time n
by an outside source

• Young bunnies mature into adult bunnies in one timestep.

• Each pair of adult bunnies produces a pair of young bunnies on each
timestep.

Determine an operator expression for the “bunny” system, relating X and Y .

Hint: It may help to introduce two auxilliary signals, one to represent the
number of pairs of adult bunnies in the system, and one to represent the
number of pairs of child bunnies in the system.

6.01 Intro to EECS I Lecture 2 (slide 97) 11 Feb 2019



Check Yourself!

• y[n] is the total number of pairs of bunnies present at time n (regardless
of age)

• x[n] is the number of new pairs of (young) bunnies introduced at time n
by an outside source

• Young bunnies mature into adult bunnies in one timestep.

• Each pair of adult bunnies produces a pair of young bunnies on each
timestep.

Determine an operator expression for the “bunny” system, relating X and Y .

Hint: It may help to introduce two auxilliary signals, one to represent the
number of pairs of adult bunnies in the system, and one to represent the
number of pairs of child bunnies in the system.

6.01 Intro to EECS I Lecture 2 (slide 98) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C
Y = R(A+ C) +RA+X
Y = R(A+ C) +R2(A+ C) +X
Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 99) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C
Y = R(A+ C) +RA+X
Y = R(A+ C) +R2(A+ C) +X
Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 100) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C
Y = R(A+ C) +RA+X
Y = R(A+ C) +R2(A+ C) +X
Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 101) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C
Y = R(A+ C) +RA+X
Y = R(A+ C) +R2(A+ C) +X
Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 102) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C

Y = R(A+ C) +RA+X
Y = R(A+ C) +R2(A+ C) +X
Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 103) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C
Y = R(A+ C) +RA+X

Y = R(A+ C) +R2(A+ C) +X
Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 104) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C
Y = R(A+ C) +RA+X
Y = R(A+ C) +R2(A+ C) +X

Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 105) 11 Feb 2019



Check Yourself!

Define new signals C and A, representing children and adults, respectively.

On each timestep, the number of children:
C = RA+X

On each timestep, the number of adults:
A = R(A+ C)

Want to use algebra to get an expression just involving Y and X and
operators

Y = A+ C
Y = R(A+ C) +RA+X
Y = R(A+ C) +R2(A+ C) +X
Y = RY +R2Y +X

6.01 Intro to EECS I Lecture 2 (slide 106) 11 Feb 2019



Block Diagram

Draw a block diagram for the ”bunnies” system:

6.01 Intro to EECS I Lecture 2 (slide 107) 11 Feb 2019



Simulating

>>> children = 1

>>> adults = 0

>>> for i in range(100):

... print(adults + children, end=" ")

... newadults = children + adults

... newchildren = adults

... adults, children = newadults, newchildren

...

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

6765 10946 17711 28657 46368 75025 121393 196418 317811 514229

832040 1346269 2178309 3524578 5702887 9227465 14930352

24157817 39088169 63245986 102334155 165580141 267914296

433494437 701408733 1134903170 1836311903 2971215073 4807526976

7778742049 12586269025 20365011074 32951280099 53316291173

86267571272 139583862445 225851433717 365435296162 591286729879

956722026041 1548008755920 2504730781961 4052739537881 ...

6.01 Intro to EECS I Lecture 2 (slide 108) 11 Feb 2019



Simulating

>>> children = 1

>>> adults = 0

>>> for i in range(100):

... print(adults + children, end=" ")

... newadults = children + adults

... newchildren = adults

... adults, children = newadults, newchildren

...

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181

6765 10946 17711 28657 46368 75025 121393 196418 317811 514229

832040 1346269 2178309 3524578 5702887 9227465 14930352

24157817 39088169 63245986 102334155 165580141 267914296

433494437 701408733 1134903170 1836311903 2971215073 4807526976

7778742049 12586269025 20365011074 32951280099 53316291173

86267571272 139583862445 225851433717 365435296162 591286729879

956722026041 1548008755920 2504730781961 4052739537881 ...

6.01 Intro to EECS I Lecture 2 (slide 109) 11 Feb 2019



Modeling Wall Finder

In order to better understand wall finder, we are going to build mathematical
and computational models of the system this week (starting today!). We will
break this system into pieces:

controller plant

sensor

+X Y
error command

−

We have control over one of these pieces (controller), but the others are part
of the system we are trying to control, so we have to try to model what is
there.

6.01 Intro to EECS I Lecture 2 (slide 110) 11 Feb 2019



Recap

Introduced the signals and systems abstraction.

Introduced several representations of systems:
difference equations, block diagrams, state machines,
operator expressions, sample responses

Discussed applications of operator notation (you’ll get more practice in this
week’s labs and homeworks!)

Saw one example of using the Signals and Systems approach for modeling,
and a few examples of converting between different representations.

Software Lab 2:
Begin Modeling Wall Finder

Design Lab 2:
Simulate, Test, and Improve Model

6.01 Intro to EECS I Lecture 2 (slide 111) 11 Feb 2019


