6.01

Lecture 8: Circuit Abstractions

Lecturer: Adam Hartz (hz@mit.edu)

As you come in...

- Grab one handout (on the table by the entrance)
- Please sit near the front!
Midterm 2

Time: Thursday, 12 April, 7:30-9:30pm, 50-340 (Walker)

Coverage: Everything up to and including SL09

You may refer to any printed materials you bring.
You may not use computers, phones, or calculators.

Review materials will be posted in addition to week 8 exercises.
Optional review session (time/location TBA)

No Design Lab in week 9.

Conflict? E-mail hz@mit.edu by this Friday.
One central theme of 6.01 is the idea of controlling complexity when designing large systems through **modularity** and **abstraction**. Modularity and abstraction are essential in the design on complex systems.
Modularity and Abstraction

One central theme of 6.01 is the idea of controlling complexity when designing large systems through modularity and abstraction. Modularity and abstraction are essential in the design of complex systems.

Python:

- Primitives: +, *, 7, ’cat’
- Combinations: if, while, list, dict
- Abstractions: def, class
Modularity and Abstraction

One central theme of 6.01 is the idea of controlling complexity when designing large systems through modularity and abstraction. Modularity and abstraction are essential in the design on complex systems.

Python:
- Primitives: +, *, 7, ’cat’
- Combinations: if, while, list, dict
- Abstractions: def, class

Signals and Systems:
- Primitives: k, \mathcal{R}
- Combinations: Adders, Cascade, Feedback
- Abstractions: System Functionals, Poles
Modularity and Abstraction in Circuits?

Circuits represent systems as connections of elements.

Currents flow through elements, and

Voltages develop across elements.

We would like to have a modular way of working with circuits. In ideal case, elements would be complex abstractions.

The problem is that **all** of the elements interact with each other.
Buffers can be used to increase modularity:

The voltage divider on the left acts as a module that produces $8V$, regardless of loading of bulb on the right.
Buffering with Op-Amps

Buffers can be used to increase modularity:

![Circuit diagram](image)

The voltage divider on the left acts as a module that produces $8V$, regardless of loading of bulb on the right.

Op-Amp topologies can also be viewed as modular pieces. For example, non-inverting amplifier:
Buffering Is Not Always An Option

All elements in a circuit model of a neuron interact with each other:

Fortunately, there are other useful ways to deal with interactions.
Check Yourself

Imagine you are given a black box with one of these two circuits inside, but with the terminals exposed. How can you tell which one of the circuits is inside it?

![Diagram of two circuits](#)
Check Yourself

Imagine you are given a black box with one of these two circuits inside, but with the terminals exposed. How can you tell which one of the circuits is inside it?

![Circuit Diagram]
Check Yourself

Imagine you are given a black box with one of these two circuits inside, but with the terminals exposed. How can you tell which one of the circuits is inside it?

1. Voltage Source: 10V across a 2Ω resistor
2. Current Source: 5A through a 2Ω resistor
One-Ports

If a circuit connects to “the world” via just two terminals, then that circuit can be represented by a single generalized element (regardless of how many components are in the circuit).

\[I \quad + \]

\[V \quad - \]

This is analogous to

- replacing delays, gains, adders with system functional
- combining a sequence of operations in a procedure call
- combining diverse data in a list
One-Ports

If a circuit connects to “the world” via just two terminals, then that circuit can be represented by a single generalized element (regardless of how many components are in the circuit).

This is analogous to

- replacing delays, gains, adders with system functional
- combining a sequence of operations in a procedure call
- combining diverse data in a list

The one-port is characterized by how it constrains the current through it and the voltage across it: its ”I-V curve”.
Patterns

In this circuit, changing an element changes voltages and currents systematically. Consider the changes in V_o and I_o when R_o is changed:

\[
\begin{array}{c|c|c}
R_o (\Omega) & V_o (V) & I_o (A) \\
\hline
0 & 30 & 20 \\
1 & 20 & 15 \\
2 & 15 & 12 \\
3 & 12 & 10 \\
4 & 10 & 6 \\
\infty & 0 & 0 \\
\end{array}
\]
Patterns

In this circuit, changing an element changes voltages and currents systematically.
Consider the changes in V_o and I_o when R_o is changed:

\[\begin{array}{c|c|c|c}
R_o \ (\Omega) & V_o \ (V) & I_o \ (A) \\
0 & 0 & 30 \\
\end{array} \]
Patterns

In this circuit, changing an element changes voltages and currents systematically.
Consider the changes in V_o and I_o when R_o is changed:

\[R_o \quad (\Omega) \quad V_o \quad (V) \quad I_o \quad (A) \]
\[
\begin{array}{ccc}
0 & 0 & 30 \\
1 & 20 & 20 \\
\end{array}
\]
Patterns

In this circuit, changing an element changes voltages and currents systematically.
Consider the changes in V_o and I_o when R_o is changed:

\[
\begin{array}{|c|c|c|}
\hline
R_o \ (\Omega) & V_o \ (V) & I_o \ (A) \\
\hline
0 & 0 & 30 \\
1 & 20 & 20 \\
2 & 30 & 15 \\
\hline
\end{array}
\]
Patterns

In this circuit, changing an element changes voltages and currents systematically.
Consider the changes in V_o and I_o when R_o is changed:

<table>
<thead>
<tr>
<th>R_o (Ω)</th>
<th>V_o (V)</th>
<th>I_o (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>12</td>
</tr>
</tbody>
</table>
Patterns

In this circuit, changing an element changes voltages and currents systematically. Consider the changes in V_o and I_o when R_o is changed:

\[
\begin{array}{lcccc}
R_o (\Omega) & V_o (V) & I_o (A) \\
0 & 0 & 30 \\
1 & 20 & 20 \\
2 & 30 & 15 \\
3 & 36 & 12 \\
4 & 40 & 10 \\
\end{array}
\]
In this circuit, changing an element changes voltages and currents systematically. Consider the changes in V_o and I_o when R_o is changed:

![Circuit Diagram]

<table>
<thead>
<tr>
<th>R_o (Ω)</th>
<th>V_o (V)</th>
<th>I_o (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>∞</td>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>
Why is the relationship between V_o and I_o linear?

1. Ohm’s law for R_o is a linear relation between I_o and V_o.
2. The parallel combination of R_o and 6Ω is linear in R_o.
3. The equations for the three left-most components are linear.
4. The voltage divider formed by 3Ω and 6Ω resistors is linear.
5. None of the above.
Why is the relationship between V_o and I_o linear?

1. Ohm’s law for R_o is a linear relation between I_o and V_o.
2. The parallel combination of R_o and $6\,\Omega$ is linear in R_o.
3. The equations for the three left-most components are linear.
4. The voltage divider formed by $3\,\Omega$ and $6\,\Omega$ resistors is linear.
5. None of the above.
Current-Voltage Relationships

The straight line is a property of the boxed part of the circuit. In fact, the same relation holds for any circuit outside the box!

\[
\begin{align*}
V_o &= 90 - 6I_o \\
I_o &= \frac{V_o}{R_o}
\end{align*}
\]

<table>
<thead>
<tr>
<th>(V_o) (V)</th>
<th>(I_o) (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>36</td>
<td>12</td>
</tr>
<tr>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
</tbody>
</table>
Current-Voltage Relationships

The I-V relation summarized **all** possible behaviors of the circuit, regardless of what is connected to it.

We can think about an entire circuit as a single **one-port**:
One-Ports

If a circuit connects to “the world” via just two terminals, then that circuit can be represented by a single generalized element (regardless of how many components are in the circuit).

\[I + V \]

This is analogous to

- replacing delays, gains, adders with system functional
- combining a sequence of operations in a procedure call
- combining diverse data in a list
One-Ports

If a circuit connects to “the world” via just two terminals, then that circuit can be represented by a single generalized element (regardless of how many components are in the circuit).

\[
\begin{array}{c}
\text{I} \\
+ \\
\text{V} \\
- \\
\end{array}
\]

This is analogous to
- replacing delays, gains, adders with system functional
- combining a sequence of operations in a procedure call
- combining diverse data in a list

These representations are **compositional**: replace multiple elements with a single element that can be used in the same way primitives are used.
Current-Voltage Relationships

How does knowing that the I-V curve is a straight line influence our thinking about abstraction in circuits?

\[V_o = I_o \cdot (3\Omega + 6\Omega) \]

\[90V \]

\[3\Omega \]

\[6\Omega \]

\[V_o \]

\[I_o \]
Current-Voltage Relationships

I-V relations for primitives (resistors, sources) are linear.

\[V = R_0 I \]
\[V = V_0 \]
\[I = I_0 \]
Check Yourself!

What is the corresponding I-V relation?

1.
2.
3.
4.
Check Yourself!

What is the corresponding I-V relation? 1

1 2 3 4
If the I-V curves for two one-ports are both straight lines, then the I-V curve of the series combination is also a straight line.

\[V_1 = I_1 \quad V_2 = I_2 \quad V_s = V_1 + V_2 \]

The “horizontal sum” of two straight lines is a straight line.
Parallel One-Ports

If the I-V curves for two one-ports are both straight lines, then the I-V curve of the parallel combination is also a straight line.

The "sum" of two straight lines is a straight line.
Linear I-V Curves

In fact, in a circuit made of only linear components, the I-V curve for any two terminals in the circuit will be linear!
Thévenin Equivalents

If the current-voltage relation is linear, the current-voltage relation can be replicated by a voltage source in series with a resistor.
Check Yourself!

What is the slope of this I-V curve?

1. R
2. $1/R$
3. V_0/R
4. R/V_0
5. None of the above
What is the slope of this I-V curve?

1. R
2. $1/R$
3. V_0/R
4. R/V_0
5. None of the above
Thévenin Equivalents

If the current-voltage relation is linear, the current-voltage relation can be replicated by a voltage source in series with a resistor.

\[V = \frac{1}{R} \]

\[I = \frac{V - V_0}{R} \]

If \(I = 0 \), then \(V = V_0 \) (the "V-intercept")

The rate of growth of \(I = \frac{V}{R} - \frac{V_0}{R} \) with \(V \) is the slope \(\frac{1}{R} \).
Thévenin Equivalents

If the current-voltage relation is linear, the current-voltage relation can be replicated by a voltage source in series with a resistor.

\[I = \frac{V - V_0}{R} \]

From the circuit, \(I = \frac{V - V_0}{R} \)
If the current-voltage relation is linear, the current-voltage relation can be replicated by a voltage source in series with a resistor.

From the circuit, \(I = \frac{V - V_0}{R} \)

If \(I = 0 \), then \(V = V_0 \) (the “V-intercept”)

\[\text{V} \]
\[\text{I} \]
\[\frac{1}{R} \]
If the current-voltage relation is linear, the current-voltage relation can be replicated by a voltage source in series with a resistor.

From the circuit, $I = \frac{V - V_0}{R}$

If $I = 0$, then $V = V_0$ (the "V-intercept")

The rate of growth of $I = \frac{V}{R} - \frac{V_0}{R}$ with V is the slope $\frac{1}{R}$
Linear Relationship

Goal: Find I-V curve of a subcircuit so that we can replace it with a Thévenin (without affecting other values in the circuit) to simplify analysis. (similar to series/parallel substitutions)

Because we know that the I-V curve of any circuit we can construct with resistors and independent sources is linear, it can be fully characterized by:

- two points, or
- a point and a slope

Intercepts are specified by the source in the equivalent, and the slope is specified by the resistor.
Intercepts

First, find the “V-intercept”: voltage when current is 0 ("open-circuit voltage")
Intercepts

First, find the “V-intercept”: voltage when current is 0 (“open-circuit voltage”)

Set $I = 0$ in the circuit. Then $V = V_0 = 1V$.
Next, find the “I-intercept”: current when voltage is 0 ("short-circuit current")
Intercepts

Next, find the “I-intercept”: current when voltage is 0 ("short-circuit current")

Set $V = 0$ in the circuit. Then $I = I_0 = -\frac{1}{2} A$.
Intercepts

The equivalent resistance is \(R = -\frac{V_0}{I_0} \)

\[
\begin{align*}
I & \quad V \\
\hline
I_0 & \quad V_0 \\
\frac{1}{R} & \quad \frac{1}{V_0}
\end{align*}
\]

\[
\begin{align*}
I & \quad I \\
\hline
V & \quad 1 \text{ V} \\
+ & \quad 2 \Omega \\
- & \quad 2 \Omega
\end{align*}
\]
Intercepts

The equivalent resistance is \(R = -\frac{V_0}{I_0} \)

Then \(R = \frac{V_0}{-I_0} = \frac{1\text{V}}{0.5\text{A}} = 2\Omega \).
Equivalent circuits

These circuits are equivalent (where $R = 2\Omega$ and $V_0 = 1V$):

\[V_0 = I_0 \]

\[V = I \times R \]

\[V = V_0 \]

\[I = \frac{V}{R} \]
Check Yourself!

Find the Thévenin equivalent of this circuit:

![Circuit Diagram](image)

10V

1Ω

3Ω

I

+

V

−
Check Yourself!

Find the Thévenin equivalent of this circuit:

Open-circuit Voltage:
\[V_0 = 10V \left(\frac{3\Omega}{3\Omega + 1\Omega} \right) = 7.5V \]
Check Yourself!

Find the Thévenin equivalent of this circuit:

\[
\begin{align*}
V_0 &= 10V \left(\frac{3\Omega}{3\Omega + 1\Omega} \right) = 7.5V \\
I_0 &= -\frac{10V}{1\Omega} = -10A
\end{align*}
\]
Check Yourself!

Find the Thévenin equivalent of this circuit:

Open-circuit Voltage:
\[V_0 = 10V \left(\frac{3\Omega}{3\Omega+1\Omega} \right) = 7.5V \]

Short-circuit Current:
\[I_0 = -\frac{10V}{1\Omega} = -10A \]

Equivalent Resistance:
\[R = -\frac{V_0}{I_0} = \frac{7.5V}{10A} = 0.75\Omega \]
Check Yourself!

These circuits are “equivalent” in the sense that their I-V curves (and, thus, their terminal behavior) are the same:
Check Yourself!

Consider doubling the voltage of the source in the previous circuit from 10V to 20V. How do the Thévenin voltage and resistance of the equivalent circuit change?

0. \(V_T \) increases, \(R_T \) increases
1. \(V_T \) increases, \(R_T \) stays the same
2. \(V_T \) increases, \(R_T \) decreases
3. \(V_T \) decreases, \(R_T \) increases
4. \(V_T \) decreases, \(R_T \) stays the same
5. \(V_T \) decreases, \(R_T \) decreases
Check Yourself!

Consider doubling the voltage of the source in the previous circuit from 10V to 20V. How do the Thévenin voltage and resistance of the equivalent circuit change?

0. V_T increases, R_T increases
1. V_T increases, R_T stays the same
2. V_T increases, R_T decreases
3. V_T decreases, R_T increases
4. V_T decreases, R_T stays the same
5. V_T decreases, R_T decreases
Alternate Method

The Thévenin resistance does not depend on the source values! So that resistance would be the same if the sources all had value 50, or 100, or 0!

Alternate approach: Find V_T as before, then set all source values to zero and find the equivalent resistance between the two terminals.

This can provide an alternative way of thinking about circuits and their models.
Alternate Method: Example

\[I \rightarrow 7\Omega \quad 1\Omega \rightarrow 2A \rightarrow 3V \]
Alternate Alternate Method

![Circuit Diagram]

I

V

$2k\Omega$

$3k\Omega$

$2k\Omega$

$2k\Omega$
Equivalent circuits have conceptual value.
Example: Will closing the switch increase or decrease I?

We could just solve two circuits questions (one with switch open and one with switch closed) and compare I values.

But this question can be answered without doing any calculations!
Replace the parts to the left and right of \(I \) with equivalents:

Closing the switch decreases equivalent resistance to the right of \(I \). Therefore, closing the switch increases \(I \).
From homework: pick R_1 and R_2 such that $V_o = 2.5$ Volts

This is a difficult question, made much easier by replacing part of the circuit with its Thévenin equivalent.
Example: solving for I in the following circuit
Conceptual Value of Equivalent Circuits

Strategy: find Thévenin equivalent for red components, viewed through the port labeled n_+ and n_-
Conceptual Value of Equivalent Circuits

Strategy: find Thévenin equivalent for red components, viewed through the port labeled n_+ and n_-
Check Yourself!

What is the open-circuit voltage?

0. 10V
1. 8V
2. 5V
3. 3V
4. 0V
5. something else
Check Yourself!

What is the open-circuit voltage?

0. 10V
1. 8V
2. 5V
3. 3V
4. 0V
5. something else
Check Yourself!

What is the Thévenin resistance?

1. \((2\Omega \ || \ 2\Omega) + (1\Omega \ || \ 4\Omega)\)
2. \((2\Omega + 2\Omega) \ || \ (1\Omega + 4\Omega)\)
3. \((2\Omega \ || \ 1\Omega) + (2\Omega \ || \ 4\Omega)\)
4. \((2\Omega + 1\Omega) \ || \ (2\Omega + 4\Omega)\)
5. something else
Check Yourself!

What is the Thévenin resistance?

1. \((2\Omega \parallel 2\Omega) + (1\Omega \parallel 4\Omega)\)
2. \((2\Omega + 2\Omega) \parallel (1\Omega + 4\Omega)\)
3. \((2\Omega \parallel 1\Omega) + (2\Omega \parallel 4\Omega)\)
4. \((2\Omega + 1\Omega) \parallel (2\Omega + 4\Omega)\)
5. something else
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.

\[V_a = -\frac{3}{2}(V_1 + 2\frac{1}{2}(V_2 + V_3 + V_4)) = -V_1 - V_2 - V_3 - V_4 \]
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.

\[V_a = -\frac{3}{2} (V_1 + \frac{2}{3} (V_2 + V_3 + V_4)) = -V_1 - V_2 - V_3 - V_4 \]
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.

\[V_a = -\frac{V_1}{2} - \frac{V_2}{2} - \frac{V_3}{4} - \frac{V_4}{8} \]
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.

\[V_a = -\frac{3}{2} (V_1 + 2 \frac{3}{4} (V_2 + V_3 + V_4)) \]
Can be used to simplify complicated circuits iteratively.

\[V_a = -\frac{V_1}{2} - \frac{V_2}{4} - \frac{V_3}{8} - \frac{V_4}{8} \]
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.

\[V_a = -\left(V_1 + \frac{1}{2} V_2 + \frac{1}{4} V_3 + \frac{1}{8} V_4 \right) \]
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.

\[V_a = \frac{-1}{3} + \frac{2}{3}(\frac{V_2}{2} + \frac{V_3}{4} + \frac{V_4}{8}) \]
Conceptual Value of Equivalent Circuits

Can be used to simplify complicated circuits iteratively.

\[V_a = -\frac{3}{2} \left(\frac{V_1}{3} + \frac{2}{3} \left(\frac{V_2}{2} + \frac{V_3}{4} + \frac{V_4}{8} \right) \right) = -\frac{V_1}{2} - \frac{V_2}{2} - \frac{V_3}{4} - \frac{V_4}{8} \]
Conceptual Value of Equivalent Circuits

Potentially useful as a model of things other than circuits. Example: Designing a safe EKG

A Thévenin equivalent of *me* could be useful.

If the current-voltage relation is linear, the current-voltage relation can also be replicated by a current source in parallel with a resistor.

\[V = (I - I_0)R \]

If \(V = 0 \), then \(I = I_0 \) (the "I-intercept").

The rate of growth of \(I = I_0 + \frac{V}{R} \) with \(V \) is the slope.

\[\frac{1}{R} \]
Norton Equivalents

If the current-voltage relation is linear, the current-voltage relation can also be replicated by a current source in parallel with a resistor.

From the circuit, \(V = (I - I_0)R \)
Norton Equivalents

If the current-voltage relation is linear, the current-voltage relation can also be replicated by a current source in parallel with a resistor.

From the circuit, \(V = (I - I_0)R \)

If \(V = 0 \), then \(I = I_0 \) (the “I-intercept”)
Norton Equivalents

If the current-voltage relation is linear, the current-voltage relation can also be replicated by a current source in parallel with a resistor.

From the circuit, \(V = (I - I_0)R \)

If \(V = 0 \), then \(I = I_0 \) (the “I-intercept”)

The rate of growth of \(I = I_0 + \frac{V}{R} \) with \(V \) is the slope \(\frac{1}{R} \)
Equivalent Circuits

\[
\begin{align*}
\text{I} & \quad \text{V} \\
\frac{1}{2\Omega} & \quad 1V \\
\frac{1}{2A} & \quad 1V \\
\end{align*}
\]

\[
\begin{align*}
\text{I} & \quad \text{V} \\
\frac{1}{2\Omega} & \quad 1V \\
\frac{1}{2A} & \quad 1V \\
\end{align*}
\]
Consequences of linearity: Equivalent Circuits

Any circuit comprised of only sources and resistors viewed from any two terminals has a linear I-V relationship, and can be represented by a Thévenin or Norton equivalent circuit.

Multiple ways to find the equivalent circuit:

- Find two points (open-circuit voltage V_T and short-circuit current I_N are usually good) and extrapolate from there.
- Find one point and a slope (by turning off all sources and finding equivalent resistance between the two terminals). Only works if all sources are independent!
- Hold I or V constant, and solve for the other.
Op-Amp Models

We have looked at several models of op-amps! At least two: *Ideal* and *VCVS*.

The ideal op-amp assumption told us something about terminal behavior when the op-amp is connected in negative feedback.

The VCVS model told us something about causality (the output voltage is set, which then affects the voltage on the – terminal).
Going Further

Last week, in order to understand why the op-amp needed to be connected in *negative feedback*, we built a more complicated model that accounted for temporal dynamics of the op-amp:

\[
\begin{align*}
V_i &\rightarrow V_+ \\
V_+ &\rightarrow K(V_+ - V_-) \\
K(V_+ - V_-) &\rightarrow R \\
R &\rightarrow C \\
C &\rightarrow V_o \\
\end{align*}
\]

These are all powerful abstractions that allow us to ignore internal details and focus on end-to-end behavior, but we can also understand the op-amp on a deeper level if we need to.
Op-Amps as Abstractions

We have treated op-amps as fundamental building blocks of circuits (which they are).

\[V_o = K(V_+ - V_-) \]

But op-amps are in fact complicated circuits that contain dozens of transistors and resistors (plus a few capacitors).
Op-Amps as Abstractions

Here is the circuit for a μA709 op-amp:
The op-amp is itself an abstraction! Details about its internal behavior are ignored, to focus exclusively on terminal behavior:

\[V_o = K(V_+ - V_-) \]

just three terminals \((V_+, V_-, V_o)\) described by two equations rather than 15 transistors, 15 resistors, and a capacitor.
Op-Amps as Abstractions

Op-amps are made from transistors, which constitute a separate level of abstraction.
Common Transistor Patterns

Look more closely at a simpler op-amp:
A *current mirror* sets its output current to equal its input current.

It can be represented by a current-controlled current source:
A pair of transistors can be used to split a current.

\[\alpha I_i \quad (1 - \alpha)I_i \]

\[V_+ \quad V_- \]

\[I_i \]

The fraction \(\alpha \) is proportional to \(e^{(V_+ - V_-)/v_T} \), where \(v_T \approx 26mV \).

This “differential amplifier” can be represented by two voltage-controlled current sources.
Modeling an Op-Amp

Output current accumulates in capacitor to make output voltage.
Modeling an Op-Amp

Output current accumulates in capacitor to make output voltage.
Modeling an Op-Amp

Output current accumulates in capacitor to make output voltage.
Modeling an Op-Amp

\[
\begin{align*}
&V_+ \quad +V \\
&V_- \quad V_o \\
&\alpha I_i \quad (1 - \alpha)I_i \\
&I_i \\
&-V
\end{align*}
\]
Modeling an Op-Amp

\[V_+ \quad +V \quad V_- \quad V_o \]

\[I_i \quad \alpha I_i \quad (1 - \alpha)I_i \]

Output current accumulates in capacitor to make output voltage.

6.01 Intro to EECS I
Lecture 8 (slide 99)
Modeling an Op-Amp

\[V_{+} \rightarrow +V \rightarrow \text{Op-Amp} \rightarrow V_{-} \rightarrow V_{o} \]

\[I_{i} \rightarrow (1 - \alpha)I_{i} \]

\[(2\alpha - 1)I_{i} \rightarrow V_{o} \]

\[\alpha I_{i} \rightarrow \text{Diode} \rightarrow \alpha I_{i} \rightarrow V_{o} \]

Output current accumulates in capacitor to make output voltage.
Modeling an Op-Amp

Output \textit{current} accumulates in capacitor to make output voltage.
Managing Complexity

Circuits can be analyzed at multiple levels of abstraction

<table>
<thead>
<tr>
<th></th>
<th>Transistor Level</th>
<th>Op-Amp Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primitives</td>
<td>R, C, transistor</td>
<td>R, C, Op-Amp</td>
</tr>
<tr>
<td>Combinations</td>
<td>wires (KVL,KCL)</td>
<td>wires (KVL,KCL)</td>
</tr>
<tr>
<td>Abstractions</td>
<td>Op-Amp!</td>
<td>Dividers, Summer, Subtractor</td>
</tr>
</tbody>
</table>
Op-Amp Model

Here is a more accurate circuit model of a $\mu A709$ op-amp:
Op-Amp: Physical Structure

This artwork shows the physical structure of a $\mu A709$ op-amp:
Modern semiconductor electronics are microfabricated using optical lithography to define the parts and connections.

A two-input logic gate (CMOS NAND) is shown schematically (left) and as physical layers defined using photolithography (right).

The metal traces make connections between transistors formed in the overlapping non-metal regions.
Managing Complexity

Circuits can be analyzed at multiple levels of abstraction

<table>
<thead>
<tr>
<th>Level</th>
<th>Primitives</th>
<th>Abstractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductors</td>
<td>silicon, dopants</td>
<td>R, C, transistors</td>
</tr>
<tr>
<td>Transistors</td>
<td>R, C, transistors</td>
<td>Op-Amps</td>
</tr>
<tr>
<td>Op-Amps</td>
<td>R, C, Op-Amp</td>
<td>Adders, Subtractors, etc</td>
</tr>
</tbody>
</table>

Abstraction³!

This hierarchy is quite powerful. Thinking about transistors and op-amps as units allows the construction of circuits with billions of parts.
Abstractions at one level become primitives at the next.

Allows for construction of circuits with billions of parts.