6.01 Introduction to EECS via Robotics

Lecture 5: Circuits Introduction

Lecturer: Adam Hartz (hz@mit.edu)

As you come in...
- Grab one handout (on the table by the entrance)
- Please sit near the front!
Midterm 1

Time: Tuesday, 13 March, 7:30-9:30pm

Room: 50-340 (Walker Gym)

Coverage: Everything up to and including week 5

You may refer to any printed materials you bring. You may not use computers, phones, or calculators.

Review materials have been posted to the web.

Conflict? E-mail hz@mit.edu by this Friday, 5pm.
6.01: Big Ideas

Focus on **key concepts**

AI/algorithms

feedback and control

circuits

probability and planning
Focus on **key concepts** with **explicit connections**

- AI/ algorithms
- circuits

- feedback and control
- probability and planning

6.01: Big Ideas
Focus on **key concepts** with **explicit connections**

AI/algorithms \(\rightarrow\) feedback and control

circuits \(\rightarrow\) probability and planning

in an **authentic context** with overarching theme:

Modular Design of Complex Systems
Module 1: Signals and Systems

Focus on:
• **modeling** and **simulation** of physical systems
• augmenting physical systems with **computation**

Topics: Discrete-time LTI Feedback Control Systems

Lab Exercises: Robotic Driving, “Jousting”
Module 1: Signals and Systems

Controlling complexity through modularity and abstraction:

Python:
- Primitives: +, *, ==, !=, ...
- Combination: if, while, f(g(x)), ...
- Abstraction: def, class, ...

LTI:
- Primitives: Gains, Delays
- Combination: Adders, Cascade, Feedback, ...
- Abstraction: System Functionals
Module 2: Circuits

Focus on:
- Designing, constructing, and analyzing physical systems

Topics: Resistive Networks, Op-Amps, Equivalence

Lab Exercises: Design new sensory modality for the robot
The Circuit Abstraction

Circuits represent systems as components connected by nodes.

Currents flow through components, and Voltages develop across components.
Quantities of Interest

- **Voltage**: The difference in electrical potential energy between two points. Measured in Volts (V, J/C)
- **Current**: The rate of flow of positive charge past a point. Measured in Amperes (Amps, A, C/s)
Quantities of Interest

- **Voltage**: The difference in electrical potential energy between two points. Measured in Volts (V, J/C)
- **Current**: The rate of flow of positive charge past a point. Measured in Amperes (Amps, A, C/s)

It is the *difference* in potential between two nodes that drives the currents.
The Circuit Abstraction

Circuits are useful and important for (at least) two very different reasons:

- **as models** of complex systems
 - biological models
 - thermodynamic models
 - fluid models

- **as physical systems**
 - power (generators, transformers, power lines, etc)
 - electronics (cell phones, computers, etc)
 - sensors (sonars, glucose sensors, etc)
Example: Flashlight

We can represent a flashlight as a voltage source (battery) connected to a resistor (light bulb).

\[+ \quad - \]

\[i \]

\[+ \quad v \quad - \]

The voltage source generates a voltage \(v \) across the resistor and a current \(i \) through the resistor.
Example: Myelinated Fiber

Model of myelinated nerve fiber
The **primitives** are simple elements: sources and resistors. The **rules of combination** are the rules that govern the flow of current and the development of voltage.

\[
\begin{align*}
V_0 &+ v \\ v &= V_0 \\
R &+ v \\
&= iR
\end{align*}
\]
The **primitives** are simple elements: sources and resistors. The **rules of combination** are the rules that govern the flow of current and the development of voltage.

\[v = V_0 \]

\[v = iR \]
Circuits: Primitives

Resistor

\[v = iR \]
Circuits: Primitives

Voltage Source

\[v = V_0 \]

Example 1:

The voltage source determines the voltage across the resistor, so the current through the resistor is $i = v/R = 1V/1\Omega = 1A$.
Analyzing More Complex Circuits

More complicated circuits are more complicated to analyze, but can be analyzed systematically by applying constitutive equations and two conservation laws.
KVL: The sum of the voltages around any closed path is zero.

\[v_1 = V_0 \]

Example:

\[-v_1 + v_2 + v_4 = 0 \]
Analyzing Circuits: KVL

KVL: The sum of the voltages around any closed path is zero.

Example: $-v_1 + v_2 + v_4 = 0$
Impossible Things

Penrose Staircase

\[3V - 6V - -2V \neq 0V\]
Analyzing Circuits: KCL

The flow of electrical current is analogous to the flow of incompressible fluid (e.g., water):

All water that flows into a junction must flow out. All current that flows into a node must flow out.

Current \(i_1 \) flows in, and two currents \(i_2 \) and \(i_3 \) flow out:

\[i_1 = i_2 + i_3 \]
Analyzing Circuits: KCL

KCL: The net flow of current into (or out of) a node is zero.

\[\sum i_{in} = \sum i_{out} \]
KCL: The net flow of current into (or out of) a node is zero.

$$\sum i_{in} = \sum i_{out}$$

Here, there are two nodes. The net current out of each must be zero.
KCL: The net flow of current into (or out of) a node is zero.

\[\sum i_{in} = \sum i_{out} \]

Here, there are two nodes. The net current out of each must be zero.

For the top node: \[i_1 + i_2 + i_3 = 0. \]
Analyzing Circuits: KCL

KCL: The net flow of current into (or out of) a node is zero.

\[\sum i_{in} = \sum i_{out} \]

Here, there are two nodes. The net current out of each must be zero.

For the top node: \(i_1 + i_2 + i_3 = 0 \).
Same for the bottom node.
At each node, KCL must hold.

We can write this relationship for each node:
At each node, KCL must hold.

We can write this relationship for each node:

\[i_1 + i_2 = 0 \]
At each node, KCL must hold.

We can write this relationship for each node:

\[i_1 + i_2 = 0 \]
\[i_2 = i_3 + i_4 \]
At each node, KCL must hold.

We can write this relationship for each node:

\[i_1 + i_2 = 0 \]
\[i_2 = i_3 + i_4 \]
\[i_1 + i_3 + i_4 = 0 \]
Analyzing More Complex Circuits

More complicated circuits are more complicated to analyze, but they can be analyzed systematically by applying constitutive equations and two conservation laws.

\[
\begin{align*}
V_1 & \quad 5\Omega & \quad 1\Omega & \quad 2\Omega \\
5\Omega & \quad 3A & \quad 2\Omega & \quad 3A \\
I_1 & \quad I_2
\end{align*}
\]
Analyzing More Complex Circuits

More complicated circuits are more complicated to analyze, but they can be analyzed systematically by applying constitutive equations and two conservation laws.

One strategy:
- Give every current and every node potential a name
- Choose a node potential to be our reference 0V
- Write one equation per component (7)
- Write one KCL equation per node, except for the reference node (4)
Analyzing More Complex Circuits

More complicated circuits are more complicated to analyze, but they can be analyzed systematically by applying constitutive equations and two conservation laws.

One strategy:
- Give every current and every node potential a name
- Choose a node potential to be our reference 0V
- Write one equation per component (7)
- Write one KCL equation per node, except for the reference node (4)

12 equations in 12 unknowns!
Analyzing More Complex Circuits

More complicated circuits are more complicated to analyze, but they can be analyzed systematically by applying constitutive equations and two conservation laws.

One strategy:
- Give every current and every node potential a name
- Choose a node potential to be our reference 0V
- Write one equation per component (7)
- Write one KCL equation per node, except for the reference node (4)

12 equations in 12 unknowns! :(
Analyzing More Complex Circuits

We will still need to solve all of these equations (to figure out the voltages and currents throughout the circuit), but there may be an easier way.

- Pick a node to be reference (0V)
- Repeat until circuit solved:
 - Find a component equation or KCL equation with exactly one unknown, and solve for that value directly (it now becomes a known value).
Analyzing More Complex Circuits

We will still need to solve all of these equations (to figure out the voltages and currents throughout the circuit), but there may be an easier way.

In many circuits, some of the equations can be solved *in isolation*. This suggests an alternative approach.
Analyzing More Complex Circuits

We will still need to solve all of these equations (to figure out the voltages and currents throughout the circuit), but there may be an easier way.

In many circuits, some of the equations can be solved *in isolation*. This suggests an alternative approach.

(version 0.0.1)
Analyzing More Complex Circuits

We will still need to solve all of these equations (to figure out the voltages and currents throughout the circuit), but there may be an easier way.

In many circuits, some of the equations can be solved \textit{in isolation}. This suggests an alternative approach.

(version 0.0.1)

- pick a node to be reference (0V)
- repeat until circuit solved:
 - Find a component equation or KCL equation with exactly one unknown, and solve for that value directly (it now becomes a known value).
Example: Complicated Circuit
Example: Complicated Circuit

\[10V \quad 1k\Omega \quad 1k\Omega \quad 1k\Omega \]
Abstractions: “One-Port”

A “one-port” is a circuit that can be represented as a single element:

![One-Port Diagram]

Current enters one terminal (+) and leaves the other (-). The one-port constrains the relationship between the current i and the voltage v.
Components can be combined in “series” to form new one-ports:

\[V = v_1 + v_2 \]
\[I = i_1 = i_2 \]
Components can be combined in “parallel” to form new one-ports:

\[V = v_1 = v_2 \]

\[I = i_1 + i_2 \]
Check Yourself!

If the two boxed circuits have the same v/i relationship, which of the following, is true?

1. $R_s < R_1$ and $R_s < R_2$
2. $R_1 < R_s < R_2$
3. $R_2 < R_s < R_1$
4. $R_s > R_1$ and $R_s > R_2$
5. None of the above
Series Resistors

The series combination of two resistors is equivalent to a single resistor whose resistance is the sum of the two original resistances.

\[v = iR_2 + iR_1 = iR_s \]
\[R_s = R_1 + R_2 \]

The series equivalent resistance is always **larger** than either of the original resistances.
Check Yourself!

If the two boxed circuits have the same v/i relationship, which of the following, is true?

1. $R_p < R_1$ and $R_p < R_2$
2. $R_1 < R_p < R_2$
3. $R_2 < R_p < R_1$
4. $R_p > R_1$ and $R_p > R_2$
5. None of the above
Parallel Resistors

The parallel combination of two resistors is equivalent to a single resistor whose conductance (1/resistance) is the sum of the two original conductances.

\[i = \frac{v}{R_1} + \frac{v}{R_2} = \frac{v}{R_p} \]

\[\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} \]

\[R_p = R_1 || R_2 = \frac{R_2 R_1}{R_2 + R_1} = \frac{R_1}{1 + \frac{R_1}{R_2}} = \frac{R_2}{1 + \frac{R_2}{R_1}} \]

The parallel equivalent resistance is always **smaller** than either of the original resistances.
Check Yourself!

What is the equivalent resistance of this one-port?

1. 0.5Ω
2. 1Ω
3. 2Ω
4. 3Ω
5. 5Ω
Check Yourself!

What is the equivalent resistance of this one-port?

1. 0.5Ω
2. 1Ω
3. 2Ω
4. 3Ω
5. 5Ω
Check Yourself!

One curve represents the equivalent resistance of \(R \) in parallel with 10Ω, and the other represents the equivalent resistance of \(R \) in series with 10Ω. Which is which?
1. Pick a node to be our reference node. All other node potentials will be measured with respect to this node.

2. Look for a constitutive equation with exactly one unknown value. If such an equation exists, solve for the unknown value and GOTO 5.

3. Look for a KCL equation with exactly one unknown current. If such an equation exists, solve for the unknown current and GOTO 5.

4. If no equation with exactly one unknown, look for patterns that can simplify the circuit (series/parallel combinations, etc), and GOTO 2.

5. If the circuit is completely solved, congratulations! If not, GOTO 2.
Example: Complicated Circuit
Resistors in series act as voltage dividers:

\[I = \frac{V}{R_1 + R_2} \]

\[V_1 = R_1 I = \frac{R_1}{R_1 + R_2} V \]

\[V_2 = R_2 I = \frac{R_2}{R_1 + R_2} V \]
Resistors in parallel act as current dividers:

\[V = (R_1||R_2)I \]

\[I_1 = \frac{V}{R_1} = \frac{1}{R_1} \frac{R_1R_2}{R_1+R_2} I = \frac{R_2}{R_1+R_2} I \]

\[I_2 = \frac{V}{R_2} = \frac{1}{R_2} \frac{R_1R_2}{R_1+R_2} I = \frac{R_1}{R_1+R_2} I \]
Check Yourself!

Which of the following is true?

1. \(V_o \leq 3V \)
2. \(3V < V_o \leq 6V \)
3. \(6V < V_o \leq 9V \)
4. \(9V < V_o \leq 12V \)
5. \(V_o > 12V \)
Which of the following is true?

1. \(V_o \leq 3V \)
2. \(3V < V_o \leq 6V \)
3. \(6V < V_o \leq 9V \)
4. \(9V < V_o \leq 12V \)
5. \(V_o > 12V \)
Another Example

\begin{circuit}
\draw (0,0) node[charge] (V1) {2V} to [2\Omega] (1,0) node[charge] (V2) {6V} to [3\Omega] (2,0) node[charge] (V3) {6V}
\end{circuit}
Combining earlier ideas, we can develop a process by which we can solve for *all currents and potentials* in a circuit.

1. Pick a node to be our reference node. All other node potentials will be measured with respect to this node.

2. Look for a constitutive equation with exactly one unknown value. If such an equation exists, solve for the unknown value and GOTO 6.

3. Look for a KCL equation with exactly one unknown current. If such an equation exists, solve for the unknown current and GOTO 6.

4. If no equation with exactly one unknown, look for patterns that can simplify the circuit (series/parallel combinations, etc), and GOTO 2.

5. **Last Resort**: If no simplifications, write a small system of constitutive and KCL equations in terms of node potentials, and solve. GOTO 6.

6. If the circuit is completely solved, congratulations! If not, GOTO 2.
Check Yourself

Solving for V_1 in the circuit below, Ben Bitdiddle takes the following steps.

1. Because the 20V source is connected to the 4Ω resistor, Ben knows that the current flowing through that resistor must be $20V/4Ω = 5A$.
2. By KCL, that same current must be flowing through the 1Ω resistor.
3. 5A through the 1Ω resistor means that the voltage drop across the resistor must be $5A \cdot 1Ω = 5V$.
4. The voltage drop across the 1Ω resistor is exactly the V_1 Ben wanted to compute, so $V_1 = 5V$.

Where was Ben’s first mistake, if any?
Check Yourself

Solving for V_2 in the circuit below, Ben Bitdiddle takes the following steps.

1. Ben notes that the two resistors are connected in parallel and decides to replace them with a single equivalent resistor whose resistance is $4\Omega || 12\Omega = 3\Omega$.
2. The current through the combination is $9V / 3\Omega = 3A$.
3. Re-expanding that combination, the current flowing through each resistor must be $3A$.
4. V_2 is the drop across the 2Ω resistor. Because $3A$ is flowing through it, $V_2 = 2\Omega \cdot 3A = 6V$.

Where was Ben’s first mistake, if any?
Check Yourself

Solving for V_3 in the circuit below, Ben Bitdiddle takes the following steps.

1. Ben notes that there is a 2V drop across the total resistance on the top, which consists of the 2Ω resistor in series with the parallel combination of 6Ω and 10Ω.
2. The equivalent resistance of the parallel combination of 6Ω and 10Ω is $6Ω || 10Ω = 8Ω$.
3. The total resistance is, therefore, $2Ω + 8Ω = 10Ω$.
4. By Ohm’s Law, the total current is $2V / 10Ω = 0.2A$, flowing left-to-right.
5. The voltage drop across the parallel combination, then, is $0.2A \cdot 8Ω = 1.6V$.
6. The total voltage drop V_4 is $8V + 1.6V = 9.6V$.
Interaction of Circuit Elements

Circuit design is complicated by interactions among the elements. Adding an element changes voltages and current **throughout** the circuit.

Example: closing a switch is equivalent to adding a new element.
Check Yourself!

How does closing the switch affect V_o and I_o?

1. V_o decreases, I_o decreases
2. V_o decreases, I_o increases
3. V_o increases, I_o decreases
4. V_o increases, I_o increases
5. depends on bulb’s resistance
Check Yourself!

How does closing the switch affect V_o and I_o?

1. V_o decreases, I_o decreases
2. V_o decreases, I_o increases
3. V_o increases, I_o decreases
4. V_o increases, I_o increases
5. depends on bulb’s resistance
Summary

This time:

• Defined the circuit abstraction (“through” and “across” variables)
• Developed systematic way of solving circuits
• Developed means of thinking about circuits through patterns (series/parallel) and abstractions (one-port)
• Noticed that the ways in which we think about abstraction and modularity in circuits is fundamentally different from the way we thought about these ideas in LTI and programming

Labs This Week:

• Software Hardware Lab: Dividers, Breadboarding
• Design Lab: Joystick-controlled robot!!!